模糊聚类和分类算法KMART和FCM的质量和性能评价

M. Rojček, I. Černák, Róbert Janiga
{"title":"模糊聚类和分类算法KMART和FCM的质量和性能评价","authors":"M. Rojček, I. Černák, Róbert Janiga","doi":"10.1109/INES.2017.8118571","DOIUrl":null,"url":null,"abstract":"In this paper we present a comparison of two fuzzy text document clustering algorithms. First of them is KMART algorithm, neural network based on Fuzzy ART neural network and the second algorithm is Fuzzy C-Means based on K-Means algorithm. The paper is aimed to compare the quality and performance of both algorithms on the set of real, contextually similar text documents falling into more categories at the same time.","PeriodicalId":344933,"journal":{"name":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality and performance evaluation of the algorithms KMART and FCM for fuzzy clustering and categorization\",\"authors\":\"M. Rojček, I. Černák, Róbert Janiga\",\"doi\":\"10.1109/INES.2017.8118571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a comparison of two fuzzy text document clustering algorithms. First of them is KMART algorithm, neural network based on Fuzzy ART neural network and the second algorithm is Fuzzy C-Means based on K-Means algorithm. The paper is aimed to compare the quality and performance of both algorithms on the set of real, contextually similar text documents falling into more categories at the same time.\",\"PeriodicalId\":344933,\"journal\":{\"name\":\"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2017.8118571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2017.8118571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对两种模糊文本文档聚类算法进行了比较。首先是KMART算法,基于模糊ART神经网络的神经网络,第二种算法是基于K-Means算法的模糊C-Means。本文旨在比较两种算法在同时属于更多类别的真实、上下文相似的文本文档集上的质量和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality and performance evaluation of the algorithms KMART and FCM for fuzzy clustering and categorization
In this paper we present a comparison of two fuzzy text document clustering algorithms. First of them is KMART algorithm, neural network based on Fuzzy ART neural network and the second algorithm is Fuzzy C-Means based on K-Means algorithm. The paper is aimed to compare the quality and performance of both algorithms on the set of real, contextually similar text documents falling into more categories at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信