基于内聚和情感属性的电影评论剧透分类

Rangsipan Marukatat
{"title":"基于内聚和情感属性的电影评论剧透分类","authors":"Rangsipan Marukatat","doi":"10.1109/IC2IE56416.2022.9970137","DOIUrl":null,"url":null,"abstract":"Spoiler reviews have different narrative patterns from non-spoiler reviews. Their narrative is more precise about what happened in the movies, while that of non-spoiler reviews is more obscure due to the omission of specific details. Our research extracted 108 cohesion-based and 6 sentiment-based attributes from movie reviews, which captured these patterns. The classification was done using Naive Bayes and a support vector machine (SVM) with a linear kernel. SVM achieved the best performance of 78% accuracy and 0.78 F -measure of class spoiler. Most contributing attributes were also determined from the weight vector given by the SVM. They supported our initial observation about the differences in narrative patterns between spoilers and non-spoilers.","PeriodicalId":151165,"journal":{"name":"2022 5th International Conference of Computer and Informatics Engineering (IC2IE)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Cohesion-Based and Sentiment-Based Attributes to Classify Spoilers in Movie Reviews\",\"authors\":\"Rangsipan Marukatat\",\"doi\":\"10.1109/IC2IE56416.2022.9970137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoiler reviews have different narrative patterns from non-spoiler reviews. Their narrative is more precise about what happened in the movies, while that of non-spoiler reviews is more obscure due to the omission of specific details. Our research extracted 108 cohesion-based and 6 sentiment-based attributes from movie reviews, which captured these patterns. The classification was done using Naive Bayes and a support vector machine (SVM) with a linear kernel. SVM achieved the best performance of 78% accuracy and 0.78 F -measure of class spoiler. Most contributing attributes were also determined from the weight vector given by the SVM. They supported our initial observation about the differences in narrative patterns between spoilers and non-spoilers.\",\"PeriodicalId\":151165,\"journal\":{\"name\":\"2022 5th International Conference of Computer and Informatics Engineering (IC2IE)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference of Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2IE56416.2022.9970137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference of Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2IE56416.2022.9970137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

剧透评论与非剧透评论有着不同的叙事模式。他们的叙述对电影中发生的事情更加精确,而非剧透评论由于遗漏了具体细节而更加模糊。我们的研究从电影评论中提取了108个基于凝聚力和6个基于情感的属性,这些属性捕捉到了这些模式。使用朴素贝叶斯和线性核支持向量机(SVM)进行分类。SVM获得了78%的准确率和0.78 F -measure的最佳性能。大多数贡献属性也由支持向量机给出的权重向量确定。他们支持了我们最初关于剧透者和非剧透者之间叙事模式差异的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Cohesion-Based and Sentiment-Based Attributes to Classify Spoilers in Movie Reviews
Spoiler reviews have different narrative patterns from non-spoiler reviews. Their narrative is more precise about what happened in the movies, while that of non-spoiler reviews is more obscure due to the omission of specific details. Our research extracted 108 cohesion-based and 6 sentiment-based attributes from movie reviews, which captured these patterns. The classification was done using Naive Bayes and a support vector machine (SVM) with a linear kernel. SVM achieved the best performance of 78% accuracy and 0.78 F -measure of class spoiler. Most contributing attributes were also determined from the weight vector given by the SVM. They supported our initial observation about the differences in narrative patterns between spoilers and non-spoilers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信