BDI- dojo:在不断发展的对抗环境中开发健壮的BDI代理

S. Pulawski, K. Dam, A. Ghose
{"title":"BDI- dojo:在不断发展的对抗环境中开发健壮的BDI代理","authors":"S. Pulawski, K. Dam, A. Ghose","doi":"10.1109/ACSOS-C52956.2021.00066","DOIUrl":null,"url":null,"abstract":"The Belief-Desire-Intention (BDI) architecture is a widely-used model for developing multi-agent systems. BDI agents pursue their goals over time using a collection of plan recipes that are programmed by the developers. Thus, traditional BDI agents are limited in dealing with dynamic environments where uncertainties are not known beforehand, such as those introduced by adversarial forces. In this paper, we present the BDI-Dojo framework for developing robust BDI agents by training them using reinforcement learning against similarly learning-equipped adversarial agents. This adversarial training approach empowers BDI agents to become more resilient in uncertain, dynamic environments.","PeriodicalId":268224,"journal":{"name":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BDI-Dojo: developing robust BDI agents in evolving adversarial environments\",\"authors\":\"S. Pulawski, K. Dam, A. Ghose\",\"doi\":\"10.1109/ACSOS-C52956.2021.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Belief-Desire-Intention (BDI) architecture is a widely-used model for developing multi-agent systems. BDI agents pursue their goals over time using a collection of plan recipes that are programmed by the developers. Thus, traditional BDI agents are limited in dealing with dynamic environments where uncertainties are not known beforehand, such as those introduced by adversarial forces. In this paper, we present the BDI-Dojo framework for developing robust BDI agents by training them using reinforcement learning against similarly learning-equipped adversarial agents. This adversarial training approach empowers BDI agents to become more resilient in uncertain, dynamic environments.\",\"PeriodicalId\":268224,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSOS-C52956.2021.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS-C52956.2021.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信念-欲望-意图(Belief-Desire-Intention, BDI)体系结构是一种广泛应用于多智能体系统开发的模型。随着时间的推移,BDI代理使用由开发人员编写的计划配方集合来实现它们的目标。因此,传统的BDI代理在处理事先不知道不确定性的动态环境方面受到限制,例如由对抗力量引入的不确定性。在本文中,我们提出了BDI- dojo框架,用于开发健壮的BDI代理,方法是使用强化学习来训练它们,以对抗具有类似学习装备的对抗性代理。这种对抗性训练方法使BDI代理在不确定的动态环境中变得更有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BDI-Dojo: developing robust BDI agents in evolving adversarial environments
The Belief-Desire-Intention (BDI) architecture is a widely-used model for developing multi-agent systems. BDI agents pursue their goals over time using a collection of plan recipes that are programmed by the developers. Thus, traditional BDI agents are limited in dealing with dynamic environments where uncertainties are not known beforehand, such as those introduced by adversarial forces. In this paper, we present the BDI-Dojo framework for developing robust BDI agents by training them using reinforcement learning against similarly learning-equipped adversarial agents. This adversarial training approach empowers BDI agents to become more resilient in uncertain, dynamic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信