在勒索软件攻击期间对恶意软件变体进行解混淆的聚类分析

A. Arrott, Arun Lakhotia, F. Leitold, Charles LeDoux
{"title":"在勒索软件攻击期间对恶意软件变体进行解混淆的聚类分析","authors":"A. Arrott, Arun Lakhotia, F. Leitold, Charles LeDoux","doi":"10.1109/CyberSA.2018.8551432","DOIUrl":null,"url":null,"abstract":"Risk managers attempting to reduce cyber-security vulnerability in enterprise IT networks rely on the \"malware detection rate\" as a primary measure at each layer of protection (e.g., network firewalls, breach detection systems, secure mail-servers, endpoint security suites). However, to be directly usable in risk assessments, separate malware detection rates are required for different malware categories that are quantitatively related to specific impacts of infection. A three-tier hierarchy of malware classification is formulated to assist cyber-risk decision-making. Malware is first categorized by victim impact (e.g., adware, data exfiltration, ransomware); second by malware technique (e.g., malware families), and third by evasion and obfuscation variants within individual malware families (e.g., polymorphs, metamorphs). The three-tier hierarchy is applied to a specific vertical: ransomware (impact); ransomware family (technique); and malware binary variants within one family, WannaCry (obfuscation and evasion).","PeriodicalId":352813,"journal":{"name":"2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cluster analysis for deobfuscation of malware variants during ransomware attacks\",\"authors\":\"A. Arrott, Arun Lakhotia, F. Leitold, Charles LeDoux\",\"doi\":\"10.1109/CyberSA.2018.8551432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Risk managers attempting to reduce cyber-security vulnerability in enterprise IT networks rely on the \\\"malware detection rate\\\" as a primary measure at each layer of protection (e.g., network firewalls, breach detection systems, secure mail-servers, endpoint security suites). However, to be directly usable in risk assessments, separate malware detection rates are required for different malware categories that are quantitatively related to specific impacts of infection. A three-tier hierarchy of malware classification is formulated to assist cyber-risk decision-making. Malware is first categorized by victim impact (e.g., adware, data exfiltration, ransomware); second by malware technique (e.g., malware families), and third by evasion and obfuscation variants within individual malware families (e.g., polymorphs, metamorphs). The three-tier hierarchy is applied to a specific vertical: ransomware (impact); ransomware family (technique); and malware binary variants within one family, WannaCry (obfuscation and evasion).\",\"PeriodicalId\":352813,\"journal\":{\"name\":\"2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberSA.2018.8551432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberSA.2018.8551432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

试图减少企业IT网络中的网络安全漏洞的风险管理人员依赖于“恶意软件检测率”作为每一层保护(例如,网络防火墙、漏洞检测系统、安全邮件服务器、端点安全套件)的主要措施。然而,为了直接用于风险评估,需要对不同的恶意软件类别进行单独的恶意软件检测率,这些恶意软件类别与感染的具体影响在数量上相关。恶意软件分类的三层层次结构被制定,以协助网络风险决策。恶意软件首先根据受害者影响进行分类(例如,广告软件,数据泄露,勒索软件);其次是恶意软件技术(例如,恶意软件家族),第三是单个恶意软件家族中的逃避和混淆变体(例如,多态性,变形)。三层层次结构适用于特定的垂直领域:勒索软件(影响);勒索软件家族(技术);恶意软件的二进制变种属于一个家族,WannaCry(混淆和逃避)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster analysis for deobfuscation of malware variants during ransomware attacks
Risk managers attempting to reduce cyber-security vulnerability in enterprise IT networks rely on the "malware detection rate" as a primary measure at each layer of protection (e.g., network firewalls, breach detection systems, secure mail-servers, endpoint security suites). However, to be directly usable in risk assessments, separate malware detection rates are required for different malware categories that are quantitatively related to specific impacts of infection. A three-tier hierarchy of malware classification is formulated to assist cyber-risk decision-making. Malware is first categorized by victim impact (e.g., adware, data exfiltration, ransomware); second by malware technique (e.g., malware families), and third by evasion and obfuscation variants within individual malware families (e.g., polymorphs, metamorphs). The three-tier hierarchy is applied to a specific vertical: ransomware (impact); ransomware family (technique); and malware binary variants within one family, WannaCry (obfuscation and evasion).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信