船舶振荡作用下薄壁圆柱件装配仿真

Xu Kehui, Xue Kairui, Fan Shixun, Wen Zhijie, Fan Dapeng
{"title":"船舶振荡作用下薄壁圆柱件装配仿真","authors":"Xu Kehui, Xue Kairui, Fan Shixun, Wen Zhijie, Fan Dapeng","doi":"10.1109/WCMEIM56910.2022.10021530","DOIUrl":null,"url":null,"abstract":"Swaying is the main factor restricting the precision docking of shipboard thin-walled parts. Aiming at the assembly error analysis problem of thin-walled cylindrical parts under ship oscillation, this paper presents a simulation analysis method of butt surface center error based on finite element analysis and dynamic analysis. The method integrates the control performance of the electromechanical system, the dynamic deformation of the structure and the transmission clearance. In swaying environment, establishing the simulation model of cylinder parts docking test system based on Stewart platform. Based on finite element analysis and dynamic simulation, the safety characteristics of the system are verified and the center error of the docking surface is calculated. The results show that the center error of the test system docking is 0.75mm when the ship roll amplitude is 6.25° and 2.5°. And the effectiveness of this error analysis method is verified by comparing the simulation and test results of the test system in gravity environment.","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of thin-walled cylindrical parts assembly under ship oscillation\",\"authors\":\"Xu Kehui, Xue Kairui, Fan Shixun, Wen Zhijie, Fan Dapeng\",\"doi\":\"10.1109/WCMEIM56910.2022.10021530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swaying is the main factor restricting the precision docking of shipboard thin-walled parts. Aiming at the assembly error analysis problem of thin-walled cylindrical parts under ship oscillation, this paper presents a simulation analysis method of butt surface center error based on finite element analysis and dynamic analysis. The method integrates the control performance of the electromechanical system, the dynamic deformation of the structure and the transmission clearance. In swaying environment, establishing the simulation model of cylinder parts docking test system based on Stewart platform. Based on finite element analysis and dynamic simulation, the safety characteristics of the system are verified and the center error of the docking surface is calculated. The results show that the center error of the test system docking is 0.75mm when the ship roll amplitude is 6.25° and 2.5°. And the effectiveness of this error analysis method is verified by comparing the simulation and test results of the test system in gravity environment.\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摇摆是制约舰船薄壁件精确对接的主要因素。针对船舶振动作用下薄壁圆柱件装配误差分析问题,提出了一种基于有限元分析和动力学分析的对接面中心误差仿真分析方法。该方法综合考虑了机电系统的控制性能、结构的动态变形和传动间隙。在摇摆环境下,建立了基于Stewart平台的汽缸零件对接试验系统仿真模型。在有限元分析和动态仿真的基础上,验证了系统的安全特性,计算了对接面中心误差。结果表明:当船舶横摇幅为6.25°和2.5°时,试验系统对接中心误差为0.75mm;并通过重力环境下试验系统的仿真与试验结果对比,验证了该误差分析方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of thin-walled cylindrical parts assembly under ship oscillation
Swaying is the main factor restricting the precision docking of shipboard thin-walled parts. Aiming at the assembly error analysis problem of thin-walled cylindrical parts under ship oscillation, this paper presents a simulation analysis method of butt surface center error based on finite element analysis and dynamic analysis. The method integrates the control performance of the electromechanical system, the dynamic deformation of the structure and the transmission clearance. In swaying environment, establishing the simulation model of cylinder parts docking test system based on Stewart platform. Based on finite element analysis and dynamic simulation, the safety characteristics of the system are verified and the center error of the docking surface is calculated. The results show that the center error of the test system docking is 0.75mm when the ship roll amplitude is 6.25° and 2.5°. And the effectiveness of this error analysis method is verified by comparing the simulation and test results of the test system in gravity environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信