度量空间中的在线扳手

S. Bhore, Arnold Filtser, Hadi Khodabandeh, Csaba D. T'oth
{"title":"度量空间中的在线扳手","authors":"S. Bhore, Arnold Filtser, Hadi Khodabandeh, Csaba D. T'oth","doi":"10.4230/LIPIcs.ESA.2022.18","DOIUrl":null,"url":null,"abstract":"Given a metric space $\\mathcal{M}=(X,\\delta)$, a weighted graph $G$ over $X$ is a metric $t$-spanner of $\\mathcal{M}$ if for every $u,v \\in X$, $\\delta(u,v)\\le d_G(u,v)\\le t\\cdot \\delta(u,v)$, where $d_G$ is the shortest path metric in $G$. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points $(s_1, \\ldots, s_n)$, where the points are presented one at a time (i.e., after $i$ steps, we saw $S_i = \\{s_1, \\ldots , s_i\\}$). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a $t$-spanner $G_i$ for $S_i$ for all $i$, while minimizing the number of edges, and their total weight. We construct online $(1+\\varepsilon)$-spanners in Euclidean $d$-space, $(2k-1)(1+\\varepsilon)$-spanners for general metrics, and $(2+\\varepsilon)$-spanners for ultrametrics. Most notably, in Euclidean plane, we construct a $(1+\\varepsilon)$-spanner with competitive ratio $O(\\varepsilon^{-3/2}\\log\\varepsilon^{-1}\\log n)$, bypassing the classic lower bound $\\Omega(\\varepsilon^{-2})$ for lightness, which compares the weight of the spanner, to that of the MST.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Online Spanners in Metric Spaces\",\"authors\":\"S. Bhore, Arnold Filtser, Hadi Khodabandeh, Csaba D. T'oth\",\"doi\":\"10.4230/LIPIcs.ESA.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a metric space $\\\\mathcal{M}=(X,\\\\delta)$, a weighted graph $G$ over $X$ is a metric $t$-spanner of $\\\\mathcal{M}$ if for every $u,v \\\\in X$, $\\\\delta(u,v)\\\\le d_G(u,v)\\\\le t\\\\cdot \\\\delta(u,v)$, where $d_G$ is the shortest path metric in $G$. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points $(s_1, \\\\ldots, s_n)$, where the points are presented one at a time (i.e., after $i$ steps, we saw $S_i = \\\\{s_1, \\\\ldots , s_i\\\\}$). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a $t$-spanner $G_i$ for $S_i$ for all $i$, while minimizing the number of edges, and their total weight. We construct online $(1+\\\\varepsilon)$-spanners in Euclidean $d$-space, $(2k-1)(1+\\\\varepsilon)$-spanners for general metrics, and $(2+\\\\varepsilon)$-spanners for ultrametrics. Most notably, in Euclidean plane, we construct a $(1+\\\\varepsilon)$-spanner with competitive ratio $O(\\\\varepsilon^{-3/2}\\\\log\\\\varepsilon^{-1}\\\\log n)$, bypassing the classic lower bound $\\\\Omega(\\\\varepsilon^{-2})$ for lightness, which compares the weight of the spanner, to that of the MST.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ESA.2022.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定一个度量空间$\mathcal{M}=(X,\delta)$,在$X$上的加权图$G$是$\mathcal{M}$的度量$t$ -spanner,如果对于每一个$u,v \in X$, $\delta(u,v)\le d_G(u,v)\le t\cdot \delta(u,v)$,其中$d_G$是$G$中的最短路径度量。本文构造了度量空间中有限集合在在线环境下的扳手。在这里,我们得到了一个点序列$(s_1, \ldots, s_n)$,这些点一次显示一个(即,在$i$步骤之后,我们看到了$S_i = \{s_1, \ldots , s_i\}$)。该算法允许在到达新点时为扳手添加边,但不允许从扳手上删除任何边。我们的目标是为所有$i$的$S_i$维护一个$t$ -扳手$G_i$,同时最小化边的数量和它们的总权重。我们构建在线$(1+\varepsilon)$ -扳手在欧几里得$d$ -空间,$(2k-1)(1+\varepsilon)$ -扳手一般度量,$(2+\varepsilon)$ -扳手超度量。最值得注意的是,在欧几里得平面中,我们构造了一个具有竞争比$O(\varepsilon^{-3/2}\log\varepsilon^{-1}\log n)$的$(1+\varepsilon)$ -扳手,绕过了轻量级的经典下界$\Omega(\varepsilon^{-2})$,该下界将扳手的重量与MST的重量进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Spanners in Metric Spaces
Given a metric space $\mathcal{M}=(X,\delta)$, a weighted graph $G$ over $X$ is a metric $t$-spanner of $\mathcal{M}$ if for every $u,v \in X$, $\delta(u,v)\le d_G(u,v)\le t\cdot \delta(u,v)$, where $d_G$ is the shortest path metric in $G$. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points $(s_1, \ldots, s_n)$, where the points are presented one at a time (i.e., after $i$ steps, we saw $S_i = \{s_1, \ldots , s_i\}$). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a $t$-spanner $G_i$ for $S_i$ for all $i$, while minimizing the number of edges, and their total weight. We construct online $(1+\varepsilon)$-spanners in Euclidean $d$-space, $(2k-1)(1+\varepsilon)$-spanners for general metrics, and $(2+\varepsilon)$-spanners for ultrametrics. Most notably, in Euclidean plane, we construct a $(1+\varepsilon)$-spanner with competitive ratio $O(\varepsilon^{-3/2}\log\varepsilon^{-1}\log n)$, bypassing the classic lower bound $\Omega(\varepsilon^{-2})$ for lightness, which compares the weight of the spanner, to that of the MST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信