二元高斯源在带反馈的高斯广播信道上的传输

Yonathan Murin, Y. Kaspi, R. Dabora, Deniz Gündüz
{"title":"二元高斯源在带反馈的高斯广播信道上的传输","authors":"Yonathan Murin, Y. Kaspi, R. Dabora, Deniz Gündüz","doi":"10.1109/ITW.2015.7133100","DOIUrl":null,"url":null,"abstract":"We study the uncoded transmission of a bivariate Gaussian source over a two-user symmetric Gaussian broadcast channel with a unit-delay noiseless feedback (GBCF), assuming that each (uncoded) source sample is transmitted using a finite number of channel uses, and that the transmission scheme is linear. We consider three transmission schemes: The scheme of Ardestanizadeh et al., which is based on linear quadratic Gaussian (LQG) control theory, the scheme of Ozarow and Leung (OL), and a novel scheme derived in this work designed using a dynamic programing (DP) approach. For the LQG scheme we characterize the minimal number of channel uses needed to achieve a specified mean-square error (MSE). For the OL scheme we present lower and upper bounds on the minimal number of channel uses needed to achieve a specified MSE, which become tight when the signal-to-noise ratio approaches zero. Finally, we show that for any fixed and finite number of channel uses, the proposed DP scheme achieves MSE lower than the MSE achieved by either the LQG or the OL schemes.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the transmission of a bivariate Gaussian source over the Gaussian broadcast channel with feedback\",\"authors\":\"Yonathan Murin, Y. Kaspi, R. Dabora, Deniz Gündüz\",\"doi\":\"10.1109/ITW.2015.7133100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the uncoded transmission of a bivariate Gaussian source over a two-user symmetric Gaussian broadcast channel with a unit-delay noiseless feedback (GBCF), assuming that each (uncoded) source sample is transmitted using a finite number of channel uses, and that the transmission scheme is linear. We consider three transmission schemes: The scheme of Ardestanizadeh et al., which is based on linear quadratic Gaussian (LQG) control theory, the scheme of Ozarow and Leung (OL), and a novel scheme derived in this work designed using a dynamic programing (DP) approach. For the LQG scheme we characterize the minimal number of channel uses needed to achieve a specified mean-square error (MSE). For the OL scheme we present lower and upper bounds on the minimal number of channel uses needed to achieve a specified MSE, which become tight when the signal-to-noise ratio approaches zero. Finally, we show that for any fixed and finite number of channel uses, the proposed DP scheme achieves MSE lower than the MSE achieved by either the LQG or the OL schemes.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

假设每个(未编码的)源样本使用有限的信道使用,并且传输方案是线性的,我们研究了二元高斯源在双用户对称高斯广播信道上具有单位延迟无噪声反馈(GBCF)的无编码传输。我们考虑了三种传输方案:Ardestanizadeh等人基于线性二次高斯(LQG)控制理论的方案,Ozarow和Leung (OL)的方案,以及本工作中使用动态规划(DP)方法设计的新方案。对于LQG方案,我们描述了实现指定均方误差(MSE)所需的最小信道使用数量。对于OL方案,我们给出了实现指定MSE所需的最小信道使用数量的下界和上界,当信噪比接近零时,它们变得很紧。最后,我们证明了对于任何固定和有限数量的信道使用,所提出的DP方案所获得的MSE低于LQG或OL方案所获得的MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the transmission of a bivariate Gaussian source over the Gaussian broadcast channel with feedback
We study the uncoded transmission of a bivariate Gaussian source over a two-user symmetric Gaussian broadcast channel with a unit-delay noiseless feedback (GBCF), assuming that each (uncoded) source sample is transmitted using a finite number of channel uses, and that the transmission scheme is linear. We consider three transmission schemes: The scheme of Ardestanizadeh et al., which is based on linear quadratic Gaussian (LQG) control theory, the scheme of Ozarow and Leung (OL), and a novel scheme derived in this work designed using a dynamic programing (DP) approach. For the LQG scheme we characterize the minimal number of channel uses needed to achieve a specified mean-square error (MSE). For the OL scheme we present lower and upper bounds on the minimal number of channel uses needed to achieve a specified MSE, which become tight when the signal-to-noise ratio approaches zero. Finally, we show that for any fixed and finite number of channel uses, the proposed DP scheme achieves MSE lower than the MSE achieved by either the LQG or the OL schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信