Jianliang Yi, Honguk Woo, J. Browne, A. Mok, Fei Xie, E. Atkins, Chan-Gun Lee
{"title":"将资源安全验证纳入嵌入式系统可执行模型开发","authors":"Jianliang Yi, Honguk Woo, J. Browne, A. Mok, Fei Xie, E. Atkins, Chan-Gun Lee","doi":"10.1109/RTAS.2008.28","DOIUrl":null,"url":null,"abstract":"This paper formulates and illustrates the integration of resource safety verification into a design methodology for development of verified and robust real-time embedded systems. Resource-related concerns are not closely linked with current xUML model-based software development although they are critical for embedded systems. We describe how to integrate resource analysis techniques into the early phase of an xUML-based development cycle. Our hybrid framework for resource safety verification combines static resource analysis and runtime monitoring. A case study based on an embedded controller for satellite simulation, TableSat, illustrates the benefits obtained by incorporating resource verification into design and combining static analysis and runtime monitoring.","PeriodicalId":130593,"journal":{"name":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Incorporating Resource Safety Verification to Executable Model-based Development for Embedded Systems\",\"authors\":\"Jianliang Yi, Honguk Woo, J. Browne, A. Mok, Fei Xie, E. Atkins, Chan-Gun Lee\",\"doi\":\"10.1109/RTAS.2008.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper formulates and illustrates the integration of resource safety verification into a design methodology for development of verified and robust real-time embedded systems. Resource-related concerns are not closely linked with current xUML model-based software development although they are critical for embedded systems. We describe how to integrate resource analysis techniques into the early phase of an xUML-based development cycle. Our hybrid framework for resource safety verification combines static resource analysis and runtime monitoring. A case study based on an embedded controller for satellite simulation, TableSat, illustrates the benefits obtained by incorporating resource verification into design and combining static analysis and runtime monitoring.\",\"PeriodicalId\":130593,\"journal\":{\"name\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Real-Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2008.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2008.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incorporating Resource Safety Verification to Executable Model-based Development for Embedded Systems
This paper formulates and illustrates the integration of resource safety verification into a design methodology for development of verified and robust real-time embedded systems. Resource-related concerns are not closely linked with current xUML model-based software development although they are critical for embedded systems. We describe how to integrate resource analysis techniques into the early phase of an xUML-based development cycle. Our hybrid framework for resource safety verification combines static resource analysis and runtime monitoring. A case study based on an embedded controller for satellite simulation, TableSat, illustrates the benefits obtained by incorporating resource verification into design and combining static analysis and runtime monitoring.