{"title":"与ANFIS模型集成的元启发式算法的特点","authors":"Aref Yelghi, Shirmohammad Tavangari","doi":"10.1109/ICTACSE50438.2022.10009722","DOIUrl":null,"url":null,"abstract":"In recent years, many applications based on the Neural Network, Neuro-Fuzzy, and optimization algorithms have been more common for solving regression and classification problems. In the Adaptive Neuro-fuzzy inference system(ANFIS), many researchers used the adaption of metaheuristic algorithms with ANFIS to propose the best estimation model. However, many researchers only focused on the experiment without the demonstration mathematical or indicating which characteristic of optimization algorithm, during the run, affect and settable in coordination with ANFIS. The paper provides an adaption of metaheuristic algorithms with ANFIS which has been performed by considering accuracy parameters in layer 1 and layer 4 for the estimation problem. It is integrated six well-known metaheuristic algorithms and extracting the characteristic of them. In the experiment, the metaheuristic algorithms based on the evolutionary computation have been demonstrated more stable than swarm intelligence methods in tuning parameters of ANFIS.","PeriodicalId":301767,"journal":{"name":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Features of Metaheuristic Algorithm for Integration with ANFIS Model\",\"authors\":\"Aref Yelghi, Shirmohammad Tavangari\",\"doi\":\"10.1109/ICTACSE50438.2022.10009722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many applications based on the Neural Network, Neuro-Fuzzy, and optimization algorithms have been more common for solving regression and classification problems. In the Adaptive Neuro-fuzzy inference system(ANFIS), many researchers used the adaption of metaheuristic algorithms with ANFIS to propose the best estimation model. However, many researchers only focused on the experiment without the demonstration mathematical or indicating which characteristic of optimization algorithm, during the run, affect and settable in coordination with ANFIS. The paper provides an adaption of metaheuristic algorithms with ANFIS which has been performed by considering accuracy parameters in layer 1 and layer 4 for the estimation problem. It is integrated six well-known metaheuristic algorithms and extracting the characteristic of them. In the experiment, the metaheuristic algorithms based on the evolutionary computation have been demonstrated more stable than swarm intelligence methods in tuning parameters of ANFIS.\",\"PeriodicalId\":301767,\"journal\":{\"name\":\"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTACSE50438.2022.10009722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Theoretical and Applied Computer Science and Engineering (ICTASCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACSE50438.2022.10009722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Features of Metaheuristic Algorithm for Integration with ANFIS Model
In recent years, many applications based on the Neural Network, Neuro-Fuzzy, and optimization algorithms have been more common for solving regression and classification problems. In the Adaptive Neuro-fuzzy inference system(ANFIS), many researchers used the adaption of metaheuristic algorithms with ANFIS to propose the best estimation model. However, many researchers only focused on the experiment without the demonstration mathematical or indicating which characteristic of optimization algorithm, during the run, affect and settable in coordination with ANFIS. The paper provides an adaption of metaheuristic algorithms with ANFIS which has been performed by considering accuracy parameters in layer 1 and layer 4 for the estimation problem. It is integrated six well-known metaheuristic algorithms and extracting the characteristic of them. In the experiment, the metaheuristic algorithms based on the evolutionary computation have been demonstrated more stable than swarm intelligence methods in tuning parameters of ANFIS.