土壤变形模型的实时模拟:一种混合方法

Daniel Holz, Thomas Beer, Torsten Kuhlen
{"title":"土壤变形模型的实时模拟:一种混合方法","authors":"Daniel Holz, Thomas Beer, Torsten Kuhlen","doi":"10.2312/PE/vriphys/vriphys09/021-030","DOIUrl":null,"url":null,"abstract":"The simulation of soil deformation in real-time is a challenging task. Realizing the strengths and weaknesses of particle and mesh-based approaches we propose a hybrid model that combines both. Together with an adaptive sampling method, which effectively reduces the number of particles in the simulation, and a selective update technique our method is applicable in real-time VR environments. Furthermore, in order to account for the high degree of dynamics in soil behavior we consider soil as non-homogeneous and account for its degree of compaction. By incorporating soil mechanical formulations in our model and considering several physically plausible parameters the presented method allows for the simulation of soil as the material empirically investigated by civil engineers and soil mechanicians for decades.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Soil Deformation Models for Real-Time Simulation: A Hybrid Approach\",\"authors\":\"Daniel Holz, Thomas Beer, Torsten Kuhlen\",\"doi\":\"10.2312/PE/vriphys/vriphys09/021-030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simulation of soil deformation in real-time is a challenging task. Realizing the strengths and weaknesses of particle and mesh-based approaches we propose a hybrid model that combines both. Together with an adaptive sampling method, which effectively reduces the number of particles in the simulation, and a selective update technique our method is applicable in real-time VR environments. Furthermore, in order to account for the high degree of dynamics in soil behavior we consider soil as non-homogeneous and account for its degree of compaction. By incorporating soil mechanical formulations in our model and considering several physically plausible parameters the presented method allows for the simulation of soil as the material empirically investigated by civil engineers and soil mechanicians for decades.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys09/021-030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys09/021-030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

土体变形的实时模拟是一项具有挑战性的任务。认识到基于粒子和基于网格的方法的优缺点,我们提出了一种结合两者的混合模型。该方法采用了自适应采样方法,有效地减少了模拟中的粒子数量,并采用了选择性更新技术,适用于实时VR环境。此外,为了解释土壤行为的高度动态性,我们认为土壤是非均匀的,并考虑其压实程度。通过将土力学公式纳入我们的模型,并考虑几个物理上合理的参数,所提出的方法允许将土作为土木工程师和土壤力学家几十年来经验研究的材料进行模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soil Deformation Models for Real-Time Simulation: A Hybrid Approach
The simulation of soil deformation in real-time is a challenging task. Realizing the strengths and weaknesses of particle and mesh-based approaches we propose a hybrid model that combines both. Together with an adaptive sampling method, which effectively reduces the number of particles in the simulation, and a selective update technique our method is applicable in real-time VR environments. Furthermore, in order to account for the high degree of dynamics in soil behavior we consider soil as non-homogeneous and account for its degree of compaction. By incorporating soil mechanical formulations in our model and considering several physically plausible parameters the presented method allows for the simulation of soil as the material empirically investigated by civil engineers and soil mechanicians for decades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信