Mahdi Barzegar Khalilsarai, Saeid Haghighatshoar, G. Caire
{"title":"如何在FDD系统中实现大规模MIMO增益?","authors":"Mahdi Barzegar Khalilsarai, Saeid Haghighatshoar, G. Caire","doi":"10.1109/SPAWC.2018.8445872","DOIUrl":null,"url":null,"abstract":"Massive MIMO is a powerful multiuser/multiantenna technology that exploits a very large number of antennas at the base station side and the knowledge of the channel matrix between base station antennas and multiple users in order to achieve large beamforming and multiplexing gain. Classical massive MIMO exploits Time-Division Duplexing (TDD) and channel reciprocity, such that the channel matrix can be learned at the base station from the incoming uplink pilot signals sent by the users. However, the large majority of cellular networks deployed today make use of Frequency Division Duplexing (FDD) where channel reciprocity does not hold and explicit downlink probing and uplink CSI feedback are required in order to achieve some spatial multiplexing gain. Unfortunately, the overhead incurred by explicit probing and feedback is very large in massive MIMO, since the channels are high-dimensional random vectors. In this paper, we present a new approach to achieve very competitive tradeoff between spatial multiplexing gain and probing/feedback overhead in FDD massive MIMO. Our approach is based on two novel concepts: 1) an efficient and mathematically rigorous technique to extrapolate the channel covariance matrix from the uplink to the downlink, such that the second order statistics of each downlink channel can be accurately learned for free from uplink pilots; 2) a novel “sparsifying precoding” approach, that introduces sparsity in the channel in a controlled form, such that for any assigned overhead (i.e., downlink pilot dimension) it is possible to set an optimal sparsity level for which the “effective” channels after sparsification can be estimated at the base station with low mean-square error. We compare our method with that of the state-of-the-art compressed sensing (CS) based method. Our results show that the proposed method is much more robust than compressed sensing methods, since it is able to “shape the channel sparsity” as desired, instead of being at the mercy of nature (i.e., at the mercy of the natural sparsity induced by the nronaaation environment).","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How to Achieve Massive MIMO Gains in FDD Systems?\",\"authors\":\"Mahdi Barzegar Khalilsarai, Saeid Haghighatshoar, G. Caire\",\"doi\":\"10.1109/SPAWC.2018.8445872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive MIMO is a powerful multiuser/multiantenna technology that exploits a very large number of antennas at the base station side and the knowledge of the channel matrix between base station antennas and multiple users in order to achieve large beamforming and multiplexing gain. Classical massive MIMO exploits Time-Division Duplexing (TDD) and channel reciprocity, such that the channel matrix can be learned at the base station from the incoming uplink pilot signals sent by the users. However, the large majority of cellular networks deployed today make use of Frequency Division Duplexing (FDD) where channel reciprocity does not hold and explicit downlink probing and uplink CSI feedback are required in order to achieve some spatial multiplexing gain. Unfortunately, the overhead incurred by explicit probing and feedback is very large in massive MIMO, since the channels are high-dimensional random vectors. In this paper, we present a new approach to achieve very competitive tradeoff between spatial multiplexing gain and probing/feedback overhead in FDD massive MIMO. Our approach is based on two novel concepts: 1) an efficient and mathematically rigorous technique to extrapolate the channel covariance matrix from the uplink to the downlink, such that the second order statistics of each downlink channel can be accurately learned for free from uplink pilots; 2) a novel “sparsifying precoding” approach, that introduces sparsity in the channel in a controlled form, such that for any assigned overhead (i.e., downlink pilot dimension) it is possible to set an optimal sparsity level for which the “effective” channels after sparsification can be estimated at the base station with low mean-square error. We compare our method with that of the state-of-the-art compressed sensing (CS) based method. Our results show that the proposed method is much more robust than compressed sensing methods, since it is able to “shape the channel sparsity” as desired, instead of being at the mercy of nature (i.e., at the mercy of the natural sparsity induced by the nronaaation environment).\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Massive MIMO is a powerful multiuser/multiantenna technology that exploits a very large number of antennas at the base station side and the knowledge of the channel matrix between base station antennas and multiple users in order to achieve large beamforming and multiplexing gain. Classical massive MIMO exploits Time-Division Duplexing (TDD) and channel reciprocity, such that the channel matrix can be learned at the base station from the incoming uplink pilot signals sent by the users. However, the large majority of cellular networks deployed today make use of Frequency Division Duplexing (FDD) where channel reciprocity does not hold and explicit downlink probing and uplink CSI feedback are required in order to achieve some spatial multiplexing gain. Unfortunately, the overhead incurred by explicit probing and feedback is very large in massive MIMO, since the channels are high-dimensional random vectors. In this paper, we present a new approach to achieve very competitive tradeoff between spatial multiplexing gain and probing/feedback overhead in FDD massive MIMO. Our approach is based on two novel concepts: 1) an efficient and mathematically rigorous technique to extrapolate the channel covariance matrix from the uplink to the downlink, such that the second order statistics of each downlink channel can be accurately learned for free from uplink pilots; 2) a novel “sparsifying precoding” approach, that introduces sparsity in the channel in a controlled form, such that for any assigned overhead (i.e., downlink pilot dimension) it is possible to set an optimal sparsity level for which the “effective” channels after sparsification can be estimated at the base station with low mean-square error. We compare our method with that of the state-of-the-art compressed sensing (CS) based method. Our results show that the proposed method is much more robust than compressed sensing methods, since it is able to “shape the channel sparsity” as desired, instead of being at the mercy of nature (i.e., at the mercy of the natural sparsity induced by the nronaaation environment).