{"title":"在一个地方使用Hecke算子的正熵","authors":"Zvi Shem-Tov","doi":"10.1093/IMRN/RNAA235","DOIUrl":null,"url":null,"abstract":"We prove the following statement: Let $X=\\text{SL}_n(\\mathbb{Z})\\backslash \\text{SL}_n(\\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\\in A$ acts on $\\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Positive Entropy Using Hecke Operators at a Single Place\",\"authors\":\"Zvi Shem-Tov\",\"doi\":\"10.1093/IMRN/RNAA235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following statement: Let $X=\\\\text{SL}_n(\\\\mathbb{Z})\\\\backslash \\\\text{SL}_n(\\\\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\\\\in A$ acts on $\\\\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\\\\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positive Entropy Using Hecke Operators at a Single Place
We prove the following statement: Let $X=\text{SL}_n(\mathbb{Z})\backslash \text{SL}_n(\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\in A$ acts on $\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.