在一个地方使用Hecke算子的正熵

Zvi Shem-Tov
{"title":"在一个地方使用Hecke算子的正熵","authors":"Zvi Shem-Tov","doi":"10.1093/IMRN/RNAA235","DOIUrl":null,"url":null,"abstract":"We prove the following statement: Let $X=\\text{SL}_n(\\mathbb{Z})\\backslash \\text{SL}_n(\\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\\in A$ acts on $\\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Positive Entropy Using Hecke Operators at a Single Place\",\"authors\":\"Zvi Shem-Tov\",\"doi\":\"10.1093/IMRN/RNAA235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following statement: Let $X=\\\\text{SL}_n(\\\\mathbb{Z})\\\\backslash \\\\text{SL}_n(\\\\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\\\\in A$ acts on $\\\\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\\\\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了以下命题:设$X=\text{SL}_n(\mathbb{Z})\backslash \text{SL}_n(\mathbb{R})$,并考虑对角线群$A 0$的标准作用是某个正常数。那么a $中的任意正则元素$a\作用于$\mu$,几乎在每一个遍历分量上都具有正熵。我们也证明了$\mathbb{Q}$上由除法代数产生的格的类似结果,并推导了相关局部对称空间的量子唯一遍历性结果。这概括了布鲁克斯和林登施特劳斯的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive Entropy Using Hecke Operators at a Single Place
We prove the following statement: Let $X=\text{SL}_n(\mathbb{Z})\backslash \text{SL}_n(\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\in A$ acts on $\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信