基于机器视觉的无人机空中加油姿态估计算法比较

G. Campa, M. Mammarella, M. Napolitano, M. L. Fravolini, L. Pollini, B. Stolarik
{"title":"基于机器视觉的无人机空中加油姿态估计算法比较","authors":"G. Campa, M. Mammarella, M. Napolitano, M. L. Fravolini, L. Pollini, B. Stolarik","doi":"10.1109/MED.2006.328769","DOIUrl":null,"url":null,"abstract":"This paper focuses on the analysis of the performance of specific 'detection and labeling' and 'pose estimation' algorithms within a machine vision (MV)-based approach for the problem of autonomous aerial refueling (AAR) of UAVs. A robust 'detection and labeling algorithm' for the correct identification and sorting of the optical markers is proposed; a sorted list of marker positions is then provided as input to the 'pose estimation' algorithm. A detailed study of the performance of two specific 'pose estimation' algorithms (GLSDC and LHM) is performed with special emphasis on the required computational effort as well as on the robustness and error propagation characteristics. Extensive simulation studies demonstrate the performance of the LHM and GLSDC algorithms and show the importance of a robust 'detection and labeling' algorithm. The simulation effort is performed using a detailed modeling of the AAR maneuver according to the USAF refueling method","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A comparison of Pose Estimation algorithms for Machine Vision based Aerial Refueling for UAVs\",\"authors\":\"G. Campa, M. Mammarella, M. Napolitano, M. L. Fravolini, L. Pollini, B. Stolarik\",\"doi\":\"10.1109/MED.2006.328769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the analysis of the performance of specific 'detection and labeling' and 'pose estimation' algorithms within a machine vision (MV)-based approach for the problem of autonomous aerial refueling (AAR) of UAVs. A robust 'detection and labeling algorithm' for the correct identification and sorting of the optical markers is proposed; a sorted list of marker positions is then provided as input to the 'pose estimation' algorithm. A detailed study of the performance of two specific 'pose estimation' algorithms (GLSDC and LHM) is performed with special emphasis on the required computational effort as well as on the robustness and error propagation characteristics. Extensive simulation studies demonstrate the performance of the LHM and GLSDC algorithms and show the importance of a robust 'detection and labeling' algorithm. The simulation effort is performed using a detailed modeling of the AAR maneuver according to the USAF refueling method\",\"PeriodicalId\":347035,\"journal\":{\"name\":\"2006 14th Mediterranean Conference on Control and Automation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2006.328769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文重点分析了无人机自主空中加油(AAR)问题中基于机器视觉(MV)的特定“检测和标记”和“姿态估计”算法的性能。提出了一种鲁棒的“检测和标记算法”,用于正确识别和分类光学标记;然后将标记位置的排序列表作为“姿态估计”算法的输入。详细研究了两种特定的“姿态估计”算法(GLSDC和LHM)的性能,特别强调了所需的计算量以及鲁棒性和误差传播特性。大量的仿真研究证明了LHM和GLSDC算法的性能,并显示了鲁棒“检测和标记”算法的重要性。仿真工作是根据美国空军加油方法对AAR机动进行详细建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of Pose Estimation algorithms for Machine Vision based Aerial Refueling for UAVs
This paper focuses on the analysis of the performance of specific 'detection and labeling' and 'pose estimation' algorithms within a machine vision (MV)-based approach for the problem of autonomous aerial refueling (AAR) of UAVs. A robust 'detection and labeling algorithm' for the correct identification and sorting of the optical markers is proposed; a sorted list of marker positions is then provided as input to the 'pose estimation' algorithm. A detailed study of the performance of two specific 'pose estimation' algorithms (GLSDC and LHM) is performed with special emphasis on the required computational effort as well as on the robustness and error propagation characteristics. Extensive simulation studies demonstrate the performance of the LHM and GLSDC algorithms and show the importance of a robust 'detection and labeling' algorithm. The simulation effort is performed using a detailed modeling of the AAR maneuver according to the USAF refueling method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信