C. Furse, N. Jayakumar, E. Benoit, M. U. Saleh, Josiah Lacombe, M. Scarpulla, J. Harley, S. Kingston, Brent Waddoups, C. Deline
{"title":"复杂阻抗的扩频时域反射计:在光伏阵列上的应用","authors":"C. Furse, N. Jayakumar, E. Benoit, M. U. Saleh, Josiah Lacombe, M. Scarpulla, J. Harley, S. Kingston, Brent Waddoups, C. Deline","doi":"10.1109/AUTEST.2018.8532521","DOIUrl":null,"url":null,"abstract":"Spread spectrum time domain reflectometry (SSTDR) has previously been used for detection and location of intermittent faults on live electrical wiring. These intermittent faults can be open circuits, short circuits, or resistive changes, all of which preserve the original shape of the SSTDR correlated waveform. But things are very different when SSTDR encounters a complex impedance discontinuity such as a capacitor or inductor. In this case, the reflection is a function of frequency, changing the shape of the SSTDR signature. In this paper, we will show the SSTDR response to single capacitors and inductors. We will also explore how SSTDR responds to arrays of PV panels (which are capacitive) connected by wires. We will show both simulations and measurements. In some configurations, it is relatively easy to see faults, although algorithms are still under development. In other configurations, little change occurs, which makes it very difficult to create a system for testing for these faults.","PeriodicalId":384058,"journal":{"name":"2018 IEEE AUTOTESTCON","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Spread Spectrum Time Domain Reflectometry for Complex Impedances: Application to PV Arrays\",\"authors\":\"C. Furse, N. Jayakumar, E. Benoit, M. U. Saleh, Josiah Lacombe, M. Scarpulla, J. Harley, S. Kingston, Brent Waddoups, C. Deline\",\"doi\":\"10.1109/AUTEST.2018.8532521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spread spectrum time domain reflectometry (SSTDR) has previously been used for detection and location of intermittent faults on live electrical wiring. These intermittent faults can be open circuits, short circuits, or resistive changes, all of which preserve the original shape of the SSTDR correlated waveform. But things are very different when SSTDR encounters a complex impedance discontinuity such as a capacitor or inductor. In this case, the reflection is a function of frequency, changing the shape of the SSTDR signature. In this paper, we will show the SSTDR response to single capacitors and inductors. We will also explore how SSTDR responds to arrays of PV panels (which are capacitive) connected by wires. We will show both simulations and measurements. In some configurations, it is relatively easy to see faults, although algorithms are still under development. In other configurations, little change occurs, which makes it very difficult to create a system for testing for these faults.\",\"PeriodicalId\":384058,\"journal\":{\"name\":\"2018 IEEE AUTOTESTCON\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2018.8532521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2018.8532521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spread Spectrum Time Domain Reflectometry for Complex Impedances: Application to PV Arrays
Spread spectrum time domain reflectometry (SSTDR) has previously been used for detection and location of intermittent faults on live electrical wiring. These intermittent faults can be open circuits, short circuits, or resistive changes, all of which preserve the original shape of the SSTDR correlated waveform. But things are very different when SSTDR encounters a complex impedance discontinuity such as a capacitor or inductor. In this case, the reflection is a function of frequency, changing the shape of the SSTDR signature. In this paper, we will show the SSTDR response to single capacitors and inductors. We will also explore how SSTDR responds to arrays of PV panels (which are capacitive) connected by wires. We will show both simulations and measurements. In some configurations, it is relatively easy to see faults, although algorithms are still under development. In other configurations, little change occurs, which makes it very difficult to create a system for testing for these faults.