Hui Lu, Xuan Cheng, Wentao Xia, Pan Deng, Minghui Liu, Tianshu Xie, Xiaomin Wang, Meilin Liu
{"title":"CyclicShift:一种丰富数据模式的数据增强方法","authors":"Hui Lu, Xuan Cheng, Wentao Xia, Pan Deng, Minghui Liu, Tianshu Xie, Xiaomin Wang, Meilin Liu","doi":"10.1145/3503161.3548188","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a simple yet effective data augmentation strategy, dubbed CyclicShift, to enrich data patterns. The idea is to shift the image in a certain direction and then circularly refill the resultant out-of-frame part to the other side. Compared with previous related methods, Translation, and Shuffle, our proposed method is able to avoid losing pixels of the original image and preserve its semantic information as much as possible. Visually and emprically, we show that our method indeed brings new data patterns and thereby improves the generalization ability as well as the performance of models. Extensive experiments demonstrate our method's effectiveness in image classification and fine-grained recognition over multiple datasets and various network architectures. Furthermore, our method can also be superimposed on other data augmentation methods in a very simple way. CyclicMix, the simultaneous use of CyclicShift and CutMix, hits a new high in most cases. Our code is open-source and available at https://github.com/dejavunHui/CyclicShift.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CyclicShift: A Data Augmentation Method For Enriching Data Patterns\",\"authors\":\"Hui Lu, Xuan Cheng, Wentao Xia, Pan Deng, Minghui Liu, Tianshu Xie, Xiaomin Wang, Meilin Liu\",\"doi\":\"10.1145/3503161.3548188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a simple yet effective data augmentation strategy, dubbed CyclicShift, to enrich data patterns. The idea is to shift the image in a certain direction and then circularly refill the resultant out-of-frame part to the other side. Compared with previous related methods, Translation, and Shuffle, our proposed method is able to avoid losing pixels of the original image and preserve its semantic information as much as possible. Visually and emprically, we show that our method indeed brings new data patterns and thereby improves the generalization ability as well as the performance of models. Extensive experiments demonstrate our method's effectiveness in image classification and fine-grained recognition over multiple datasets and various network architectures. Furthermore, our method can also be superimposed on other data augmentation methods in a very simple way. CyclicMix, the simultaneous use of CyclicShift and CutMix, hits a new high in most cases. Our code is open-source and available at https://github.com/dejavunHui/CyclicShift.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CyclicShift: A Data Augmentation Method For Enriching Data Patterns
In this paper, we propose a simple yet effective data augmentation strategy, dubbed CyclicShift, to enrich data patterns. The idea is to shift the image in a certain direction and then circularly refill the resultant out-of-frame part to the other side. Compared with previous related methods, Translation, and Shuffle, our proposed method is able to avoid losing pixels of the original image and preserve its semantic information as much as possible. Visually and emprically, we show that our method indeed brings new data patterns and thereby improves the generalization ability as well as the performance of models. Extensive experiments demonstrate our method's effectiveness in image classification and fine-grained recognition over multiple datasets and various network architectures. Furthermore, our method can also be superimposed on other data augmentation methods in a very simple way. CyclicMix, the simultaneous use of CyclicShift and CutMix, hits a new high in most cases. Our code is open-source and available at https://github.com/dejavunHui/CyclicShift.