弱分配律的凸性

F. Bonchi, A. Santamaria
{"title":"弱分配律的凸性","authors":"F. Bonchi, A. Santamaria","doi":"10.46298/lmcs-18(4:8)2022","DOIUrl":null,"url":null,"abstract":"We study the canonical weak distributive law $\\delta$ of the powerset monad\nover the semimodule monad for a certain class of semirings containing, in\nparticular, positive semifields. For this subclass we characterise $\\delta$ as\na convex closure in the free semimodule of a set. Using the abstract theory of\nweak distributive laws, we compose the powerset and the semimodule monads via\n$\\delta$, obtaining the monad of convex subsets of the free semimodule.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity via Weak Distributive Laws\",\"authors\":\"F. Bonchi, A. Santamaria\",\"doi\":\"10.46298/lmcs-18(4:8)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the canonical weak distributive law $\\\\delta$ of the powerset monad\\nover the semimodule monad for a certain class of semirings containing, in\\nparticular, positive semifields. For this subclass we characterise $\\\\delta$ as\\na convex closure in the free semimodule of a set. Using the abstract theory of\\nweak distributive laws, we compose the powerset and the semimodule monads via\\n$\\\\delta$, obtaining the monad of convex subsets of the free semimodule.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:8)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:8)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类包含正半域的半环在半模单上幂集单的正则弱分配律。对于这个子类,我们在集合的自由半模中将$\delta$描述为凸闭包。利用弱分配律的抽象理论,通过$\ δ $组合幂集和半模单,得到了自由半模凸子集的单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convexity via Weak Distributive Laws
We study the canonical weak distributive law $\delta$ of the powerset monad over the semimodule monad for a certain class of semirings containing, in particular, positive semifields. For this subclass we characterise $\delta$ as a convex closure in the free semimodule of a set. Using the abstract theory of weak distributive laws, we compose the powerset and the semimodule monads via $\delta$, obtaining the monad of convex subsets of the free semimodule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信