{"title":"无线传感器网络中支持qos的视频流","authors":"Song Guo, T. Little","doi":"10.1109/NCA.2010.38","DOIUrl":null,"url":null,"abstract":"Recent advances in wireless communications technology and low-power, low-cost CMOS imaging sensors enable a new sensing modality employing ubiquitous distributed video sensing. In many video sensing applications multimedia streams are often required by the base station to provide detailed information of the target spot in the sensor field. However, limited bandwidth, unstable network environment, and data transmission interference prevent the large-scale deployment of such applications without new strategies for energy and data capacity management. In this paper we propose a dynamic path formation algorithm based on our data path throughput estimation model. Coupled with a distributed TDMA packet scheduling scheme, this path formation algorithm can establish throughput-aware video delivery path between source and destination. OPNET simulation results indicate that the throughput estimation is accurate and our proposed TDMA scheme is preferred for streaming applications. We also explore the use of distributed mobile base stations as an option to improve the egress of video data streams from the system.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"QoS-enabled Video Streaming in Wireless Sensor Networks\",\"authors\":\"Song Guo, T. Little\",\"doi\":\"10.1109/NCA.2010.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in wireless communications technology and low-power, low-cost CMOS imaging sensors enable a new sensing modality employing ubiquitous distributed video sensing. In many video sensing applications multimedia streams are often required by the base station to provide detailed information of the target spot in the sensor field. However, limited bandwidth, unstable network environment, and data transmission interference prevent the large-scale deployment of such applications without new strategies for energy and data capacity management. In this paper we propose a dynamic path formation algorithm based on our data path throughput estimation model. Coupled with a distributed TDMA packet scheduling scheme, this path formation algorithm can establish throughput-aware video delivery path between source and destination. OPNET simulation results indicate that the throughput estimation is accurate and our proposed TDMA scheme is preferred for streaming applications. We also explore the use of distributed mobile base stations as an option to improve the egress of video data streams from the system.\",\"PeriodicalId\":276374,\"journal\":{\"name\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2010.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QoS-enabled Video Streaming in Wireless Sensor Networks
Recent advances in wireless communications technology and low-power, low-cost CMOS imaging sensors enable a new sensing modality employing ubiquitous distributed video sensing. In many video sensing applications multimedia streams are often required by the base station to provide detailed information of the target spot in the sensor field. However, limited bandwidth, unstable network environment, and data transmission interference prevent the large-scale deployment of such applications without new strategies for energy and data capacity management. In this paper we propose a dynamic path formation algorithm based on our data path throughput estimation model. Coupled with a distributed TDMA packet scheduling scheme, this path formation algorithm can establish throughput-aware video delivery path between source and destination. OPNET simulation results indicate that the throughput estimation is accurate and our proposed TDMA scheme is preferred for streaming applications. We also explore the use of distributed mobile base stations as an option to improve the egress of video data streams from the system.