{"title":"干细胞与药物联合应用治疗神经系统疾病","authors":"Chia-Chi Chen, Ying-Ching Hung, Chia-Yu Lin, Hsiao-Yun Chen, Ping-Min Huang, S. Hung","doi":"10.5772/intechopen.94484","DOIUrl":null,"url":null,"abstract":"Neurological disorders (NDs) are diseases of the central and peripheral nervous system that affected the hundreds of millions of people worldwide. Temporal lobe epilepsy (TLE) is a common NDs with hallucinations and disturbance of consciousness that cause the abnormal neurological activity in any part of brain. Neuroinflammation (NI) has been identified in epilepsy-related tissue from both experimental and clinical evidence and suspected to participate in the formation of neuronal cell death, reactive gliosis and neuroplastic changes in the hippocampus, may contribute to epileptogenesis. The NI is tightly regulated by microglia, but it is thought that excessive or chronic microglial activation can contribute to neurodegenerative processes. Therefore, the modulation of microglia responses may provide a therapeutic target for the treatment of severe or chronic NI conditions. Although the condition responds well to antiepileptic drugs (AEDs), there are still unresponsive to AEDs in about 1/3 of cases. Neural stem cells are the origin of various types of neural cells during embryonic development. Currently, many results of stem cell therapies in the animal experiments and clinical trials were demonstrated the efficacious therapeutic effects in the attenuated symptoms of ND. Therefore, the combined application therapies of stem cells and drugs may be a promising candidate for the therapeutic strategies of NDs, especially TLE.","PeriodicalId":177673,"journal":{"name":"Novel Perspectives of Stem Cell Manufacturing and Therapies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Application Therapies of Stem Cells and Drugs in the Neurological Disorder Attenuation\",\"authors\":\"Chia-Chi Chen, Ying-Ching Hung, Chia-Yu Lin, Hsiao-Yun Chen, Ping-Min Huang, S. Hung\",\"doi\":\"10.5772/intechopen.94484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurological disorders (NDs) are diseases of the central and peripheral nervous system that affected the hundreds of millions of people worldwide. Temporal lobe epilepsy (TLE) is a common NDs with hallucinations and disturbance of consciousness that cause the abnormal neurological activity in any part of brain. Neuroinflammation (NI) has been identified in epilepsy-related tissue from both experimental and clinical evidence and suspected to participate in the formation of neuronal cell death, reactive gliosis and neuroplastic changes in the hippocampus, may contribute to epileptogenesis. The NI is tightly regulated by microglia, but it is thought that excessive or chronic microglial activation can contribute to neurodegenerative processes. Therefore, the modulation of microglia responses may provide a therapeutic target for the treatment of severe or chronic NI conditions. Although the condition responds well to antiepileptic drugs (AEDs), there are still unresponsive to AEDs in about 1/3 of cases. Neural stem cells are the origin of various types of neural cells during embryonic development. Currently, many results of stem cell therapies in the animal experiments and clinical trials were demonstrated the efficacious therapeutic effects in the attenuated symptoms of ND. Therefore, the combined application therapies of stem cells and drugs may be a promising candidate for the therapeutic strategies of NDs, especially TLE.\",\"PeriodicalId\":177673,\"journal\":{\"name\":\"Novel Perspectives of Stem Cell Manufacturing and Therapies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novel Perspectives of Stem Cell Manufacturing and Therapies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novel Perspectives of Stem Cell Manufacturing and Therapies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined Application Therapies of Stem Cells and Drugs in the Neurological Disorder Attenuation
Neurological disorders (NDs) are diseases of the central and peripheral nervous system that affected the hundreds of millions of people worldwide. Temporal lobe epilepsy (TLE) is a common NDs with hallucinations and disturbance of consciousness that cause the abnormal neurological activity in any part of brain. Neuroinflammation (NI) has been identified in epilepsy-related tissue from both experimental and clinical evidence and suspected to participate in the formation of neuronal cell death, reactive gliosis and neuroplastic changes in the hippocampus, may contribute to epileptogenesis. The NI is tightly regulated by microglia, but it is thought that excessive or chronic microglial activation can contribute to neurodegenerative processes. Therefore, the modulation of microglia responses may provide a therapeutic target for the treatment of severe or chronic NI conditions. Although the condition responds well to antiepileptic drugs (AEDs), there are still unresponsive to AEDs in about 1/3 of cases. Neural stem cells are the origin of various types of neural cells during embryonic development. Currently, many results of stem cell therapies in the animal experiments and clinical trials were demonstrated the efficacious therapeutic effects in the attenuated symptoms of ND. Therefore, the combined application therapies of stem cells and drugs may be a promising candidate for the therapeutic strategies of NDs, especially TLE.