Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Reddy, A. Roy-Chowdhury
{"title":"增强重建的深度量化表示","authors":"Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Reddy, A. Roy-Chowdhury","doi":"10.1109/ISBIWorkshops50223.2020.9153414","DOIUrl":null,"url":null,"abstract":"While machine learning approaches have shown remarkable performance in biomedical image analysis, most of these methods rely on high-quality and accurate imaging data. However, collecting such data requires intensive and careful manual effort. One of the major challenges in imaging the Shoot Apical Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the z-stack suffer from different perpetual quality related problems like poor contrast and blurring. These quality related issues often lead to disposal of the painstakingly collected data with little to no control on quality while collecting the data. Therefore, it becomes necessary to employ and design techniques that can enhance the images to make it more suitable for further analysis. In this paper, we propose a data-driven Deep Quantized Latent Representation (DQLR) methodology for high-quality image reconstruction in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework utilizes multiple consecutive slices in the z-stack to learn a low dimensional latent space, quantize it and subsequently perform reconstruction using the quantized representation to obtain sharper images. Experiments on a publicly available dataset validate our methodology showing promising results. Our code is available at github.com/agupt013/enhancedRec.git.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Quantized Representation For Enhanced Reconstruction\",\"authors\":\"Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Reddy, A. Roy-Chowdhury\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While machine learning approaches have shown remarkable performance in biomedical image analysis, most of these methods rely on high-quality and accurate imaging data. However, collecting such data requires intensive and careful manual effort. One of the major challenges in imaging the Shoot Apical Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the z-stack suffer from different perpetual quality related problems like poor contrast and blurring. These quality related issues often lead to disposal of the painstakingly collected data with little to no control on quality while collecting the data. Therefore, it becomes necessary to employ and design techniques that can enhance the images to make it more suitable for further analysis. In this paper, we propose a data-driven Deep Quantized Latent Representation (DQLR) methodology for high-quality image reconstruction in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework utilizes multiple consecutive slices in the z-stack to learn a low dimensional latent space, quantize it and subsequently perform reconstruction using the quantized representation to obtain sharper images. Experiments on a publicly available dataset validate our methodology showing promising results. Our code is available at github.com/agupt013/enhancedRec.git.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Quantized Representation For Enhanced Reconstruction
While machine learning approaches have shown remarkable performance in biomedical image analysis, most of these methods rely on high-quality and accurate imaging data. However, collecting such data requires intensive and careful manual effort. One of the major challenges in imaging the Shoot Apical Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the z-stack suffer from different perpetual quality related problems like poor contrast and blurring. These quality related issues often lead to disposal of the painstakingly collected data with little to no control on quality while collecting the data. Therefore, it becomes necessary to employ and design techniques that can enhance the images to make it more suitable for further analysis. In this paper, we propose a data-driven Deep Quantized Latent Representation (DQLR) methodology for high-quality image reconstruction in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework utilizes multiple consecutive slices in the z-stack to learn a low dimensional latent space, quantize it and subsequently perform reconstruction using the quantized representation to obtain sharper images. Experiments on a publicly available dataset validate our methodology showing promising results. Our code is available at github.com/agupt013/enhancedRec.git.