基于合成数据的建筑物表面损伤识别

L. Zherdeva, E. Minaev, N. A. Firsov
{"title":"基于合成数据的建筑物表面损伤识别","authors":"L. Zherdeva, E. Minaev, N. A. Firsov","doi":"10.1109/ITNT57377.2023.10139288","DOIUrl":null,"url":null,"abstract":"To detect surface damage to buildings, it is necessary to involve workers who are at risk of industrial injuries when inspecting hard-to-reach areas of industrial premises. Attraction of special means, such as aerial platforms, safety systems, etc. increase the financial costs with this approach. The use of unmanned aerial vehicles, coupled with neural network algorithms, can simplify this procedure. Due to the inaccessibility, the problem of obtaining training data for neural networks arises, which can be solved by synthesizing them in a virtual environment.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building surface damage recognition based on synthetic data\",\"authors\":\"L. Zherdeva, E. Minaev, N. A. Firsov\",\"doi\":\"10.1109/ITNT57377.2023.10139288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To detect surface damage to buildings, it is necessary to involve workers who are at risk of industrial injuries when inspecting hard-to-reach areas of industrial premises. Attraction of special means, such as aerial platforms, safety systems, etc. increase the financial costs with this approach. The use of unmanned aerial vehicles, coupled with neural network algorithms, can simplify this procedure. Due to the inaccessibility, the problem of obtaining training data for neural networks arises, which can be solved by synthesizing them in a virtual environment.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了检测建筑物的表面损坏,在检查工业场所难以触及的区域时,有必要让有工伤风险的工人参与。特殊手段的吸引,如空中平台、安全系统等,用这种方式增加了财务成本。使用无人机,加上神经网络算法,可以简化这一过程。由于神经网络的不可访问性,产生了获取训练数据的问题,这可以通过在虚拟环境中综合这些训练数据来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building surface damage recognition based on synthetic data
To detect surface damage to buildings, it is necessary to involve workers who are at risk of industrial injuries when inspecting hard-to-reach areas of industrial premises. Attraction of special means, such as aerial platforms, safety systems, etc. increase the financial costs with this approach. The use of unmanned aerial vehicles, coupled with neural network algorithms, can simplify this procedure. Due to the inaccessibility, the problem of obtaining training data for neural networks arises, which can be solved by synthesizing them in a virtual environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信