基于粒子群优化的侦察无人机路径规划

Yong Bao, Xiaowei Fu, Xiao-guang Gao
{"title":"基于粒子群优化的侦察无人机路径规划","authors":"Yong Bao, Xiaowei Fu, Xiao-guang Gao","doi":"10.1109/CINC.2010.5643794","DOIUrl":null,"url":null,"abstract":"This paper presents a method of fixed-point reconnaissance path planning for Unmanned Aerial Vehicle(UAV). In this method, Particle Swarm Optimization(PSO) is introduced into reconnaissance UAV path planning algorithm, and targets value, effective reconnaissance path and other factors that impact UAV path planning are included in the objective function of PSO. The optimal solution of reconnaissance path is obtained by optimizing of PSO. At last, the simulation is carried out and satisfactory results are achieved.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Path planning for reconnaissance UAV based on Particle Swarm Optimization\",\"authors\":\"Yong Bao, Xiaowei Fu, Xiao-guang Gao\",\"doi\":\"10.1109/CINC.2010.5643794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of fixed-point reconnaissance path planning for Unmanned Aerial Vehicle(UAV). In this method, Particle Swarm Optimization(PSO) is introduced into reconnaissance UAV path planning algorithm, and targets value, effective reconnaissance path and other factors that impact UAV path planning are included in the objective function of PSO. The optimal solution of reconnaissance path is obtained by optimizing of PSO. At last, the simulation is carried out and satisfactory results are achieved.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

提出了一种无人机定点侦察路径规划方法。该方法将粒子群优化(Particle Swarm Optimization, PSO)引入到侦察无人机路径规划算法中,将目标值、有效侦察路径等影响无人机路径规划的因素纳入到PSO的目标函数中。利用粒子群优化算法得到了侦察路径的最优解。最后进行了仿真,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path planning for reconnaissance UAV based on Particle Swarm Optimization
This paper presents a method of fixed-point reconnaissance path planning for Unmanned Aerial Vehicle(UAV). In this method, Particle Swarm Optimization(PSO) is introduced into reconnaissance UAV path planning algorithm, and targets value, effective reconnaissance path and other factors that impact UAV path planning are included in the objective function of PSO. The optimal solution of reconnaissance path is obtained by optimizing of PSO. At last, the simulation is carried out and satisfactory results are achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信