有限域格拉斯曼序列译码的组合下界

R. Agarwal
{"title":"有限域格拉斯曼序列译码的组合下界","authors":"R. Agarwal","doi":"10.1109/ISIT.2011.6033970","DOIUrl":null,"url":null,"abstract":"Codes constructed as subsets of the projective geometry of a vector space over a finite field have been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph. These codes are referred to as codes on finite-field Grassmannian or more generally as subspace codes. In this paper, we study fundamental limits to list decoding codes on finite-field Grassmannian. By exploiting the algebraic properties of the Grassmannian graph, we derive a new lower bound on the code size for the first relaxation of bounded minimum distance decoding, that is, when the worst-case list size is restricted to two. We show that, even for small finite field size and code parameters, codes on finite-field Grassmannian admit significant improvements in code rate when compared to bounded minimum distance decoding.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combinatorial lower bound for list decoding of codes on finite-field Grassmannian\",\"authors\":\"R. Agarwal\",\"doi\":\"10.1109/ISIT.2011.6033970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Codes constructed as subsets of the projective geometry of a vector space over a finite field have been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph. These codes are referred to as codes on finite-field Grassmannian or more generally as subspace codes. In this paper, we study fundamental limits to list decoding codes on finite-field Grassmannian. By exploiting the algebraic properties of the Grassmannian graph, we derive a new lower bound on the code size for the first relaxation of bounded minimum distance decoding, that is, when the worst-case list size is restricted to two. We show that, even for small finite field size and code parameters, codes on finite-field Grassmannian admit significant improvements in code rate when compared to bounded minimum distance decoding.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"423 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6033970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为有限域上向量空间的射影几何子集构造的码已被证明具有随机网络纠错码的应用。如果每个码字的维数被限制为一个固定的整数,则该码构成有限域格拉斯曼图的一个子集,或者等价地,构成相应格拉斯曼图顶点的一个子集。这些码被称为有限域格拉斯曼码或更一般地称为子空间码。本文研究有限域格拉斯曼序列译码的基本限制。通过利用格拉斯曼图的代数性质,我们导出了有界最小距离解码的第一次松弛的代码大小的新下界,即当最坏情况列表大小被限制为2时。我们证明,即使在有限域大小和码参数较小的情况下,有限域Grassmannian上的码与有界最小距离译码相比,码率也有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial lower bound for list decoding of codes on finite-field Grassmannian
Codes constructed as subsets of the projective geometry of a vector space over a finite field have been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph. These codes are referred to as codes on finite-field Grassmannian or more generally as subspace codes. In this paper, we study fundamental limits to list decoding codes on finite-field Grassmannian. By exploiting the algebraic properties of the Grassmannian graph, we derive a new lower bound on the code size for the first relaxation of bounded minimum distance decoding, that is, when the worst-case list size is restricted to two. We show that, even for small finite field size and code parameters, codes on finite-field Grassmannian admit significant improvements in code rate when compared to bounded minimum distance decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信