神经网络模型的在线滑动窗口Levenberg-Marquardt方法

P. Ferreira, A. Ruano
{"title":"神经网络模型的在线滑动窗口Levenberg-Marquardt方法","authors":"P. Ferreira, A. Ruano","doi":"10.1109/WISP.2007.4447542","DOIUrl":null,"url":null,"abstract":"On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line sliding-window Levenberg-Marquardt methods for neural network models\",\"authors\":\"P. Ferreira, A. Ruano\",\"doi\":\"10.1109/WISP.2007.4447542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当要建模的过程是时变的,或者当不可能获得覆盖整个操作区域的离线数据时,需要在线学习算法。为了最大限度地减少参数阴影和干扰问题,采用了基于滑动的算法。结果表明,通过使用滑动窗口策略来加强存储在滑动窗口中的数据的新颖性,并通过使用一个过程来防止不必要的参数更新,所取得的性能比具有固定参数更新的FIFO策略有所提高。还获得了重要的计算工作量节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line sliding-window Levenberg-Marquardt methods for neural network models
On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信