带有邻居关系的半监督聚类的进化距离度量学习方法

Ken-ichi Fukui, S. Ono, Taishi Megano, M. Numao
{"title":"带有邻居关系的半监督聚类的进化距离度量学习方法","authors":"Ken-ichi Fukui, S. Ono, Taishi Megano, M. Numao","doi":"10.1109/ICTAI.2013.66","DOIUrl":null,"url":null,"abstract":"This study proposes a distance metric learning method based on a clustering index with neighbor relation that simultaneously evaluates inter-and intra-clusters. Our proposed method optimizes a distance transform matrix based on the Mahalanobis distance by utilizing a self-adaptive differential evolution (jDE) algorithm. Our approach directly improves various clustering indices and in principle requires less auxiliary information compared to conventional metric learning methods. We experimentally validated the search efficiency of jDE and the generalization performance.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Evolutionary Distance Metric Learning Approach to Semi-supervised Clustering with Neighbor Relations\",\"authors\":\"Ken-ichi Fukui, S. Ono, Taishi Megano, M. Numao\",\"doi\":\"10.1109/ICTAI.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a distance metric learning method based on a clustering index with neighbor relation that simultaneously evaluates inter-and intra-clusters. Our proposed method optimizes a distance transform matrix based on the Mahalanobis distance by utilizing a self-adaptive differential evolution (jDE) algorithm. Our approach directly improves various clustering indices and in principle requires less auxiliary information compared to conventional metric learning methods. We experimentally validated the search efficiency of jDE and the generalization performance.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于具有邻居关系的聚类指标的距离度量学习方法,该方法可以同时评估聚类间和聚类内。该方法利用自适应差分进化(jDE)算法对基于马氏距离的距离变换矩阵进行优化。我们的方法直接改进了各种聚类指标,并且与传统的度量学习方法相比,原则上需要更少的辅助信息。实验验证了jDE的搜索效率和泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Distance Metric Learning Approach to Semi-supervised Clustering with Neighbor Relations
This study proposes a distance metric learning method based on a clustering index with neighbor relation that simultaneously evaluates inter-and intra-clusters. Our proposed method optimizes a distance transform matrix based on the Mahalanobis distance by utilizing a self-adaptive differential evolution (jDE) algorithm. Our approach directly improves various clustering indices and in principle requires less auxiliary information compared to conventional metric learning methods. We experimentally validated the search efficiency of jDE and the generalization performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信