{"title":"双向QKD协议在低QBER下优于单向协议","authors":"Jari Lietzén, R. Vehkalahti, O. Tirkkonen","doi":"10.1109/ISIT44484.2020.9174522","DOIUrl":null,"url":null,"abstract":"Two-way quantum key distribution (QKD) protocols can provide positive secret key rates for considerably higher quantum bit error rates (QBER) than one-way protocols. However, when QBER is low, only modest key rate gains have been achieved. This is one of the major obstacles for using two-way protocols. In this paper we introduce a new two-way QKD protocol which is a step towards overcoming this shortcoming. Under the assumption that the eavesdropper can only perform individual symmetric quantum attacks, our protocol performs quantum key distribution with a secret key rate that is higher than the information theoretical bound limiting the performance of any one-way protocol. This holds true also for very low QBER values.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Two-way QKD Protocol Outperforming One-way Protocols at Low QBER\",\"authors\":\"Jari Lietzén, R. Vehkalahti, O. Tirkkonen\",\"doi\":\"10.1109/ISIT44484.2020.9174522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-way quantum key distribution (QKD) protocols can provide positive secret key rates for considerably higher quantum bit error rates (QBER) than one-way protocols. However, when QBER is low, only modest key rate gains have been achieved. This is one of the major obstacles for using two-way protocols. In this paper we introduce a new two-way QKD protocol which is a step towards overcoming this shortcoming. Under the assumption that the eavesdropper can only perform individual symmetric quantum attacks, our protocol performs quantum key distribution with a secret key rate that is higher than the information theoretical bound limiting the performance of any one-way protocol. This holds true also for very low QBER values.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"279 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-way QKD Protocol Outperforming One-way Protocols at Low QBER
Two-way quantum key distribution (QKD) protocols can provide positive secret key rates for considerably higher quantum bit error rates (QBER) than one-way protocols. However, when QBER is low, only modest key rate gains have been achieved. This is one of the major obstacles for using two-way protocols. In this paper we introduce a new two-way QKD protocol which is a step towards overcoming this shortcoming. Under the assumption that the eavesdropper can only perform individual symmetric quantum attacks, our protocol performs quantum key distribution with a secret key rate that is higher than the information theoretical bound limiting the performance of any one-way protocol. This holds true also for very low QBER values.