无监督学习的并行自组织地图

I. Valova, D. Szer, N. Georgieva
{"title":"无监督学习的并行自组织地图","authors":"I. Valova, D. Szer, N. Georgieva","doi":"10.1109/IJCNN.2002.1007813","DOIUrl":null,"url":null,"abstract":"SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A growing parallel self-organizing map for unsupervised learning\",\"authors\":\"I. Valova, D. Szer, N. Georgieva\",\"doi\":\"10.1109/IJCNN.2002.1007813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

SOM用低维神经网络结构逼近高维未知输入分布,尽可能接近地模拟输入空间的拓扑结构。我们提出了一个SOM,它可以并行处理整个输入,并随着时间的推移进行自我组织。通过这种方式,可以开发网络,而不是每次出现一组新的输入向量时从头开始重新组织其结构,而是根据先前的映射调整其内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A growing parallel self-organizing map for unsupervised learning
SOM approximates a high dimensional unknown input distribution with lower dimensional neural network structure to model the topology of the input space as closely as possible. We present a SOM that processes the whole input in parallel and organizes itself over time. This way, networks can be developed that do not reorganize their structure from scratch every time a new set of input vectors is presented but rather adjust their internal architecture in accordance with previous mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信