{"title":"𝜏-tilting有限代数的一个表征","authors":"Lidia Angeleri Hugel, F. Marks, Jorge Vit'oria","doi":"10.1090/CONM/730/14711","DOIUrl":null,"url":null,"abstract":"We prove that a finite dimensional algebra is $\\tau$-tilting finite if and only if it does not admit large silting modules. Moreover, we show that for a $\\tau$-tilting finite algebra $A$ there is a bijection between isomorphism classes of basic support $\\tau$-tilting (that is, finite dimensional silting) modules and equivalence classes of ring epimorphisms $A\\longrightarrow B$ with ${\\rm Tor}_1^A(B,B)=0$. It follows that a finite dimensional algebra is $\\tau$-tilting finite if and only if there are only finitely many equivalence classes of such ring epimorphisms.","PeriodicalId":318971,"journal":{"name":"Model Theory of Modules, Algebras and\n Categories","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A characterisation of 𝜏-tilting finite\\n algebras\",\"authors\":\"Lidia Angeleri Hugel, F. Marks, Jorge Vit'oria\",\"doi\":\"10.1090/CONM/730/14711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a finite dimensional algebra is $\\\\tau$-tilting finite if and only if it does not admit large silting modules. Moreover, we show that for a $\\\\tau$-tilting finite algebra $A$ there is a bijection between isomorphism classes of basic support $\\\\tau$-tilting (that is, finite dimensional silting) modules and equivalence classes of ring epimorphisms $A\\\\longrightarrow B$ with ${\\\\rm Tor}_1^A(B,B)=0$. It follows that a finite dimensional algebra is $\\\\tau$-tilting finite if and only if there are only finitely many equivalence classes of such ring epimorphisms.\",\"PeriodicalId\":318971,\"journal\":{\"name\":\"Model Theory of Modules, Algebras and\\n Categories\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Theory of Modules, Algebras and\\n Categories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/730/14711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Theory of Modules, Algebras and\n Categories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/730/14711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
我们证明了一个有限维代数是$\tau$-倾斜有限的当且仅当它不允许大的淤积模。此外,我们还证明了对于一个$\tau$-倾斜有限代数$ a $,在基支持$\tau$-倾斜(即有限维淤积)模的同构类与${\rm Tor}_1^ a (B,B)=0$的环上胚的等价类$ a \长列B$之间存在双射。由此得出,有限维代数是$\ \ $倾斜有限的当且仅当只有有限多个等价类的环泛胚。
We prove that a finite dimensional algebra is $\tau$-tilting finite if and only if it does not admit large silting modules. Moreover, we show that for a $\tau$-tilting finite algebra $A$ there is a bijection between isomorphism classes of basic support $\tau$-tilting (that is, finite dimensional silting) modules and equivalence classes of ring epimorphisms $A\longrightarrow B$ with ${\rm Tor}_1^A(B,B)=0$. It follows that a finite dimensional algebra is $\tau$-tilting finite if and only if there are only finitely many equivalence classes of such ring epimorphisms.