论Zadeh可拓原理的直觉模糊版本

Selami Bayeğ, R. Mert
{"title":"论Zadeh可拓原理的直觉模糊版本","authors":"Selami Bayeğ, R. Mert","doi":"10.7546/nifs.2021.27.3.9-17","DOIUrl":null,"url":null,"abstract":"In this paper, by using \\alpha- and \\beta-cuts approach and the intuitionistic fuzzy Zadeh’s extension principle, we have proved a result which reveals that the \\alpha- and \\beta-cuts of an intuitionistic fuzzy number obtained by the intuitionistic fuzzy Zadeh’s extension principle coincide with the images of the \\alpha- and \\beta-cuts by the crisp function. Then we have given a corollary about monotonicity of the extension principle. Finally, we have extended these results to IF_N(\\mathbb{R}) \\times IF_N(\\mathbb{R}).","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On intuitionistic fuzzy version of Zadeh's extension principle\",\"authors\":\"Selami Bayeğ, R. Mert\",\"doi\":\"10.7546/nifs.2021.27.3.9-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by using \\\\alpha- and \\\\beta-cuts approach and the intuitionistic fuzzy Zadeh’s extension principle, we have proved a result which reveals that the \\\\alpha- and \\\\beta-cuts of an intuitionistic fuzzy number obtained by the intuitionistic fuzzy Zadeh’s extension principle coincide with the images of the \\\\alpha- and \\\\beta-cuts by the crisp function. Then we have given a corollary about monotonicity of the extension principle. Finally, we have extended these results to IF_N(\\\\mathbb{R}) \\\\times IF_N(\\\\mathbb{R}).\",\"PeriodicalId\":433687,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nifs.2021.27.3.9-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2021.27.3.9-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用\alpha -和\beta -切法和直觉模糊Zadeh的可拓原理,证明了由直觉模糊Zadeh的可拓原理得到的直觉模糊数的\alpha -切和\beta -切与由酥函数得到的\alpha -切和\beta -切的图像重合的结果。然后给出了可拓原理单调性的一个推论。最后,我们将这些结果推广到IF_N(\mathbb{R}) \times IF_N(\mathbb{R})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On intuitionistic fuzzy version of Zadeh's extension principle
In this paper, by using \alpha- and \beta-cuts approach and the intuitionistic fuzzy Zadeh’s extension principle, we have proved a result which reveals that the \alpha- and \beta-cuts of an intuitionistic fuzzy number obtained by the intuitionistic fuzzy Zadeh’s extension principle coincide with the images of the \alpha- and \beta-cuts by the crisp function. Then we have given a corollary about monotonicity of the extension principle. Finally, we have extended these results to IF_N(\mathbb{R}) \times IF_N(\mathbb{R}).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信