基于知识的文本语义表示的神经网络组件

Alejandro Piad-Morffis, R. Muñoz, Yudivián Almeida-Cruz, Yoan Gutiérrez Vázquez, Suilan Estévez-Velarde, A. Montoyo
{"title":"基于知识的文本语义表示的神经网络组件","authors":"Alejandro Piad-Morffis, R. Muñoz, Yudivián Almeida-Cruz, Yoan Gutiérrez Vázquez, Suilan Estévez-Velarde, A. Montoyo","doi":"10.26615/978-954-452-056-4_105","DOIUrl":null,"url":null,"abstract":"This paper presents Semantic Neural Networks (SNNs), a knowledge-aware component based on deep learning. SNNs can be trained to encode explicit semantic knowledge from an arbitrary knowledge base, and can subsequently be combined with other deep learning architectures. At prediction time, SNNs provide a semantic encoding extracted from the input data, which can be exploited by other neural network components to build extended representation models that can face alternative problems. The SNN architecture is defined in terms of the concepts and relations present in a knowledge base. Based on this architecture, a training procedure is developed. Finally, an experimental setup is presented to illustrate the behaviour and performance of a SNN for a specific NLP problem, in this case, opinion mining for the classification of movie reviews.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Neural Network Component for Knowledge-Based Semantic Representations of Text\",\"authors\":\"Alejandro Piad-Morffis, R. Muñoz, Yudivián Almeida-Cruz, Yoan Gutiérrez Vázquez, Suilan Estévez-Velarde, A. Montoyo\",\"doi\":\"10.26615/978-954-452-056-4_105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Semantic Neural Networks (SNNs), a knowledge-aware component based on deep learning. SNNs can be trained to encode explicit semantic knowledge from an arbitrary knowledge base, and can subsequently be combined with other deep learning architectures. At prediction time, SNNs provide a semantic encoding extracted from the input data, which can be exploited by other neural network components to build extended representation models that can face alternative problems. The SNN architecture is defined in terms of the concepts and relations present in a knowledge base. Based on this architecture, a training procedure is developed. Finally, an experimental setup is presented to illustrate the behaviour and performance of a SNN for a specific NLP problem, in this case, opinion mining for the classification of movie reviews.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于深度学习的知识感知组件——语义神经网络(SNNs)。snn可以被训练来编码来自任意知识库的显式语义知识,并且随后可以与其他深度学习架构相结合。在预测时,snn提供从输入数据中提取的语义编码,其他神经网络组件可以利用该编码来构建可以面对替代问题的扩展表示模型。SNN架构是根据知识库中存在的概念和关系来定义的。在此基础上,开发了培训程序。最后,提出了一个实验设置来说明SNN在特定NLP问题上的行为和性能,在本例中,是用于电影评论分类的意见挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Network Component for Knowledge-Based Semantic Representations of Text
This paper presents Semantic Neural Networks (SNNs), a knowledge-aware component based on deep learning. SNNs can be trained to encode explicit semantic knowledge from an arbitrary knowledge base, and can subsequently be combined with other deep learning architectures. At prediction time, SNNs provide a semantic encoding extracted from the input data, which can be exploited by other neural network components to build extended representation models that can face alternative problems. The SNN architecture is defined in terms of the concepts and relations present in a knowledge base. Based on this architecture, a training procedure is developed. Finally, an experimental setup is presented to illustrate the behaviour and performance of a SNN for a specific NLP problem, in this case, opinion mining for the classification of movie reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信