一个多功能的c++工具箱,用于基于模型的机器人操纵器实时控制系统

R. Höpler, M. Otter
{"title":"一个多功能的c++工具箱,用于基于模型的机器人操纵器实时控制系统","authors":"R. Höpler, M. Otter","doi":"10.1109/IROS.2001.976398","DOIUrl":null,"url":null,"abstract":"Model based technologies form the core of advanced robotic applications such as model predictive control and feedback linearization. More sophisticated models result in higher quality but the use in embedded real-time control systems imposes strict requirements on timing, memory allocation, and robustness. To satisfy these constraints, the model implementation is often optimized by manual coding, an unwieldy and error prone process. The paper presents an approach that exploits code synthesis from high level intuitive and convenient multi-body system (MBS) model descriptions. It relies on an object-oriented C++ library of MBS components tailored to the computations required in robot control such as forward and inverse kinematics, inverse dynamics, and Jacobians. Efficient model evaluation algorithms are developed that apply to multi-body tree structures as well as kinematic loops that are solved analytically for a certain class of loop structures.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A versatile C++ toolbox for model based, real time control systems of robotic manipulators\",\"authors\":\"R. Höpler, M. Otter\",\"doi\":\"10.1109/IROS.2001.976398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model based technologies form the core of advanced robotic applications such as model predictive control and feedback linearization. More sophisticated models result in higher quality but the use in embedded real-time control systems imposes strict requirements on timing, memory allocation, and robustness. To satisfy these constraints, the model implementation is often optimized by manual coding, an unwieldy and error prone process. The paper presents an approach that exploits code synthesis from high level intuitive and convenient multi-body system (MBS) model descriptions. It relies on an object-oriented C++ library of MBS components tailored to the computations required in robot control such as forward and inverse kinematics, inverse dynamics, and Jacobians. Efficient model evaluation algorithms are developed that apply to multi-body tree structures as well as kinematic loops that are solved analytically for a certain class of loop structures.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.976398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于模型的技术构成了模型预测控制和反馈线性化等先进机器人应用的核心。更复杂的模型导致更高的质量,但在嵌入式实时控制系统中的使用对时序,内存分配和鲁棒性提出了严格的要求。为了满足这些约束,模型实现通常通过手工编码进行优化,这是一个笨拙且容易出错的过程。本文提出了一种利用高层、直观、方便的多体系统(MBS)模型描述进行代码合成的方法。它依赖于面向对象的c++ MBS组件库,该库专为机器人控制所需的计算(如正运动学和逆运动学、逆动力学和雅可比矩阵)而定制。开发了适用于多体树形结构的高效模型评估算法,以及对某一类环结构进行解析求解的运动环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A versatile C++ toolbox for model based, real time control systems of robotic manipulators
Model based technologies form the core of advanced robotic applications such as model predictive control and feedback linearization. More sophisticated models result in higher quality but the use in embedded real-time control systems imposes strict requirements on timing, memory allocation, and robustness. To satisfy these constraints, the model implementation is often optimized by manual coding, an unwieldy and error prone process. The paper presents an approach that exploits code synthesis from high level intuitive and convenient multi-body system (MBS) model descriptions. It relies on an object-oriented C++ library of MBS components tailored to the computations required in robot control such as forward and inverse kinematics, inverse dynamics, and Jacobians. Efficient model evaluation algorithms are developed that apply to multi-body tree structures as well as kinematic loops that are solved analytically for a certain class of loop structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信