Mary Katherine Heinrich, Mostafa Wahby, Mohammad Divband Soorati, D. Hofstadler, Payam Zahadat, P. Ayres, K. Støy, Heiko Hamann
{"title":"连续建筑材料自组织结构:基于编织结构的更高柔性","authors":"Mary Katherine Heinrich, Mostafa Wahby, Mohammad Divband Soorati, D. Hofstadler, Payam Zahadat, P. Ayres, K. Støy, Heiko Hamann","doi":"10.1109/FAS-W.2016.43","DOIUrl":null,"url":null,"abstract":"Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament interlacing.","PeriodicalId":382778,"journal":{"name":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Self-Organized Construction with Continuous Building Material: Higher Flexibility Based on Braided Structures\",\"authors\":\"Mary Katherine Heinrich, Mostafa Wahby, Mohammad Divband Soorati, D. Hofstadler, Payam Zahadat, P. Ayres, K. Støy, Heiko Hamann\",\"doi\":\"10.1109/FAS-W.2016.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament interlacing.\",\"PeriodicalId\":382778,\"journal\":{\"name\":\"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2016.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2016.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Organized Construction with Continuous Building Material: Higher Flexibility Based on Braided Structures
Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament interlacing.