时变信道的学习辅助估计

Xiaoli Ma, Hao Ye, Geoffrey Y. Li
{"title":"时变信道的学习辅助估计","authors":"Xiaoli Ma, Hao Ye, Geoffrey Y. Li","doi":"10.1109/ISWCS.2018.8491068","DOIUrl":null,"url":null,"abstract":"Channel estimation is a critical module to determine the performance of wireless receivers. For some communication systems, the channels are time-varying and without well-justified models, e.g., underwater acoustic channels, high mobility channels, and mm Wave channels. These channels are usually hard to use finite parameters to estimate and track. Channel estimation in these cases may significantly affect the symbol detection performance. In this paper, we develop learning assisted (LA) channel estimation algorithms. We use CNN and DNN based channel estimators to track channel variations. We demonstrate that the estimators can be dynamically updated using pilots through incremental learning. Different from the existing channel estimators, our algorithms combine learning techniques with preamble training symbols and pilots, and thus can track channel variations on-line and fit better for the current cellular systems, vehicular communications, and underwater acoustic systems. Simulation results validate the effectiveness of our algorithms.","PeriodicalId":272951,"journal":{"name":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Learning Assisted Estimation for Time- Varying Channels\",\"authors\":\"Xiaoli Ma, Hao Ye, Geoffrey Y. Li\",\"doi\":\"10.1109/ISWCS.2018.8491068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel estimation is a critical module to determine the performance of wireless receivers. For some communication systems, the channels are time-varying and without well-justified models, e.g., underwater acoustic channels, high mobility channels, and mm Wave channels. These channels are usually hard to use finite parameters to estimate and track. Channel estimation in these cases may significantly affect the symbol detection performance. In this paper, we develop learning assisted (LA) channel estimation algorithms. We use CNN and DNN based channel estimators to track channel variations. We demonstrate that the estimators can be dynamically updated using pilots through incremental learning. Different from the existing channel estimators, our algorithms combine learning techniques with preamble training symbols and pilots, and thus can track channel variations on-line and fit better for the current cellular systems, vehicular communications, and underwater acoustic systems. Simulation results validate the effectiveness of our algorithms.\",\"PeriodicalId\":272951,\"journal\":{\"name\":\"2018 15th International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2018.8491068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2018.8491068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

信道估计是决定无线接收机性能的关键模块。对于某些通信系统,信道是时变的,没有良好的模型,例如水声信道、高迁移率信道和毫米波信道。这些通道通常很难用有限的参数来估计和跟踪。在这些情况下,信道估计可能会显著影响符号检测的性能。在本文中,我们开发了学习辅助(LA)信道估计算法。我们使用基于CNN和DNN的信道估计器来跟踪信道变化。我们证明了估计器可以通过增量学习使用导频动态更新。与现有的信道估计器不同,我们的算法将学习技术与前置训练符号和导频相结合,因此可以在线跟踪信道变化,并且更适合当前的蜂窝系统,车载通信和水声系统。仿真结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Assisted Estimation for Time- Varying Channels
Channel estimation is a critical module to determine the performance of wireless receivers. For some communication systems, the channels are time-varying and without well-justified models, e.g., underwater acoustic channels, high mobility channels, and mm Wave channels. These channels are usually hard to use finite parameters to estimate and track. Channel estimation in these cases may significantly affect the symbol detection performance. In this paper, we develop learning assisted (LA) channel estimation algorithms. We use CNN and DNN based channel estimators to track channel variations. We demonstrate that the estimators can be dynamically updated using pilots through incremental learning. Different from the existing channel estimators, our algorithms combine learning techniques with preamble training symbols and pilots, and thus can track channel variations on-line and fit better for the current cellular systems, vehicular communications, and underwater acoustic systems. Simulation results validate the effectiveness of our algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信