{"title":"LP松弛和Fuglede猜想","authors":"Aditya Siripuram, B. Osgood","doi":"10.1109/ISIT.2018.8437309","DOIUrl":null,"url":null,"abstract":"Consider a unitary (up to scaling) submatrix of the Fourier matrix with rows indexed by <tex>$\\mathcal{I}$</tex> and columns indexed by <tex>$\\mathcal{J}$</tex>. From the column index set <tex>$\\mathcal{J}$</tex> we construct a graph <tex>$\\mathcal{G}$</tex> so that the row index set <tex>$\\mathcal{I}$</tex> determines a max-clique. Interpreting <tex>$\\mathcal{G}$</tex> as coming from an association scheme gives certain bounds on the clique number, which has possible applications to Fuglede's conjecture on spectral and tiling sets.","PeriodicalId":246565,"journal":{"name":"2018 IEEE International Symposium on Information Theory (ISIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LP relaxations and Fuglede's conjecture\",\"authors\":\"Aditya Siripuram, B. Osgood\",\"doi\":\"10.1109/ISIT.2018.8437309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a unitary (up to scaling) submatrix of the Fourier matrix with rows indexed by <tex>$\\\\mathcal{I}$</tex> and columns indexed by <tex>$\\\\mathcal{J}$</tex>. From the column index set <tex>$\\\\mathcal{J}$</tex> we construct a graph <tex>$\\\\mathcal{G}$</tex> so that the row index set <tex>$\\\\mathcal{I}$</tex> determines a max-clique. Interpreting <tex>$\\\\mathcal{G}$</tex> as coming from an association scheme gives certain bounds on the clique number, which has possible applications to Fuglede's conjecture on spectral and tiling sets.\",\"PeriodicalId\":246565,\"journal\":{\"name\":\"2018 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2018.8437309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2018.8437309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consider a unitary (up to scaling) submatrix of the Fourier matrix with rows indexed by $\mathcal{I}$ and columns indexed by $\mathcal{J}$. From the column index set $\mathcal{J}$ we construct a graph $\mathcal{G}$ so that the row index set $\mathcal{I}$ determines a max-clique. Interpreting $\mathcal{G}$ as coming from an association scheme gives certain bounds on the clique number, which has possible applications to Fuglede's conjecture on spectral and tiling sets.