基于强化学习的模糊q -学习能量系统设计

J. Avanija, Suneetha Konduru, Vijetha Kura, G. NagaJyothi, Bhanuprakash Dudi, S. ManiNaidu
{"title":"基于强化学习的模糊q -学习能量系统设计","authors":"J. Avanija, Suneetha Konduru, Vijetha Kura, G. NagaJyothi, Bhanuprakash Dudi, S. ManiNaidu","doi":"10.4018/ijfsa.306284","DOIUrl":null,"url":null,"abstract":"Modern power and energy systems are becoming more complicated and uncertain as distributed energy resources (DERs), flexible loads, and other developing technologies become more integrated. This brings great challenges to the operation and control. Furthermore, the deployment of modern sensor and smart metres generates a considerable amount of data, which opens the door to fresh data-driven ways for dealing with complex operation and control difficulties. One of the most commonly touted strategies for control and optimization problems is reinforcement learning (RL). Designing a fuzzy Q-learning power energy system using RL technique will control and reduce the problems arranging in the energy system.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing a Fuzzy Q-Learning Power Energy System Using Reinforcement Learning\",\"authors\":\"J. Avanija, Suneetha Konduru, Vijetha Kura, G. NagaJyothi, Bhanuprakash Dudi, S. ManiNaidu\",\"doi\":\"10.4018/ijfsa.306284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern power and energy systems are becoming more complicated and uncertain as distributed energy resources (DERs), flexible loads, and other developing technologies become more integrated. This brings great challenges to the operation and control. Furthermore, the deployment of modern sensor and smart metres generates a considerable amount of data, which opens the door to fresh data-driven ways for dealing with complex operation and control difficulties. One of the most commonly touted strategies for control and optimization problems is reinforcement learning (RL). Designing a fuzzy Q-learning power energy system using RL technique will control and reduce the problems arranging in the energy system.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.306284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.306284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着分布式能源(DERs)、柔性负载和其他发展中的技术变得更加一体化,现代电力和能源系统变得越来越复杂和不确定。这给操作和控制带来了很大的挑战。此外,现代传感器和智能电表的部署产生了大量的数据,这为处理复杂的操作和控制困难打开了新的数据驱动方法的大门。对于控制和优化问题,最常用的策略之一是强化学习(RL)。利用强化学习技术设计模糊q学习电力能源系统,可以控制和减少能源系统中出现的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Fuzzy Q-Learning Power Energy System Using Reinforcement Learning
Modern power and energy systems are becoming more complicated and uncertain as distributed energy resources (DERs), flexible loads, and other developing technologies become more integrated. This brings great challenges to the operation and control. Furthermore, the deployment of modern sensor and smart metres generates a considerable amount of data, which opens the door to fresh data-driven ways for dealing with complex operation and control difficulties. One of the most commonly touted strategies for control and optimization problems is reinforcement learning (RL). Designing a fuzzy Q-learning power energy system using RL technique will control and reduce the problems arranging in the energy system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信