一种多hmm心电分割方法

Julien Thomas, C. Rose, F. Charpillet
{"title":"一种多hmm心电分割方法","authors":"Julien Thomas, C. Rose, F. Charpillet","doi":"10.1109/ICTAI.2006.17","DOIUrl":null,"url":null,"abstract":"Pharmaceutic studies require to analyze thousands of ECGs in order to evaluate the side effects of a new drug. In this paper we present a new approach to automatic ECG segmentation based on hierarchic continuous density hidden Markov models. We applied a wavelet transform to the signals in order to highlight the discontinuities in the modeled ECGs. A training base of standard 12-lead ECGs segmented by cardiologists was used to evaluate the performance of our method. We used a Bayesian HMM clustering algorithm to partition the training base, and we improved the method by using a multi-model approach. We present a statistical analysis of the results where we compare different automatic methods to the segmentation of the cardiologist","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A Multi-HMM Approach to ECG Segmentation\",\"authors\":\"Julien Thomas, C. Rose, F. Charpillet\",\"doi\":\"10.1109/ICTAI.2006.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pharmaceutic studies require to analyze thousands of ECGs in order to evaluate the side effects of a new drug. In this paper we present a new approach to automatic ECG segmentation based on hierarchic continuous density hidden Markov models. We applied a wavelet transform to the signals in order to highlight the discontinuities in the modeled ECGs. A training base of standard 12-lead ECGs segmented by cardiologists was used to evaluate the performance of our method. We used a Bayesian HMM clustering algorithm to partition the training base, and we improved the method by using a multi-model approach. We present a statistical analysis of the results where we compare different automatic methods to the segmentation of the cardiologist\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

制药研究需要分析成千上万的心电图,以评估新药的副作用。本文提出了一种基于层次连续密度隐马尔可夫模型的心电自动分割方法。我们对信号进行了小波变换,以突出模拟心电图中的不连续性。一个由心脏病专家分割的标准12导联心电图培训基地被用来评估我们的方法的性能。采用贝叶斯HMM聚类算法对训练库进行划分,并采用多模型方法对方法进行改进。我们提出了一个统计分析的结果,我们比较不同的自动方法,以分割心脏病专家
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-HMM Approach to ECG Segmentation
Pharmaceutic studies require to analyze thousands of ECGs in order to evaluate the side effects of a new drug. In this paper we present a new approach to automatic ECG segmentation based on hierarchic continuous density hidden Markov models. We applied a wavelet transform to the signals in order to highlight the discontinuities in the modeled ECGs. A training base of standard 12-lead ECGs segmented by cardiologists was used to evaluate the performance of our method. We used a Bayesian HMM clustering algorithm to partition the training base, and we improved the method by using a multi-model approach. We present a statistical analysis of the results where we compare different automatic methods to the segmentation of the cardiologist
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信