深度学习在胃癌诊断中的研究

Lanlan Li, Mengni Chen, Ying Zhou, Jianping Wang, Dabiao Wang
{"title":"深度学习在胃癌诊断中的研究","authors":"Lanlan Li, Mengni Chen, Ying Zhou, Jianping Wang, Dabiao Wang","doi":"10.1109/CSRSWTC50769.2020.9372583","DOIUrl":null,"url":null,"abstract":"Gastroscopy is the first method to check gastrointestinal cancer and related diseases. Traditional manual methods have the disadvantages of time-consuming, high missed diagnosis and misdiagnosis rates. Image recognition technology based on deep learning has great potential in improving diagnosis efficiency and accuracy. We summarize the latest advances in deep learning in gastric cancer diagnosis from the aspects of data sets, image preprocessing, and classification algorithms. Most research teams cooperate with hospitals to build small data sets, and preprocess the images using threshold-based filters and other methods. In terms of gastric cancer and gastric disease classification, the DenseNet model has the highest ACC, F1 score and specific SP.","PeriodicalId":207010,"journal":{"name":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research of Deep Learning on Gastric Cancer Diagnosis\",\"authors\":\"Lanlan Li, Mengni Chen, Ying Zhou, Jianping Wang, Dabiao Wang\",\"doi\":\"10.1109/CSRSWTC50769.2020.9372583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gastroscopy is the first method to check gastrointestinal cancer and related diseases. Traditional manual methods have the disadvantages of time-consuming, high missed diagnosis and misdiagnosis rates. Image recognition technology based on deep learning has great potential in improving diagnosis efficiency and accuracy. We summarize the latest advances in deep learning in gastric cancer diagnosis from the aspects of data sets, image preprocessing, and classification algorithms. Most research teams cooperate with hospitals to build small data sets, and preprocess the images using threshold-based filters and other methods. In terms of gastric cancer and gastric disease classification, the DenseNet model has the highest ACC, F1 score and specific SP.\",\"PeriodicalId\":207010,\"journal\":{\"name\":\"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSRSWTC50769.2020.9372583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSRSWTC50769.2020.9372583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

胃镜检查是检查胃肠道肿瘤及相关疾病的首选方法。传统的手工方法存在费时、漏诊和误诊率高的缺点。基于深度学习的图像识别技术在提高诊断效率和准确性方面具有很大的潜力。本文从数据集、图像预处理、分类算法等方面综述了深度学习在胃癌诊断中的最新进展。大多数研究团队与医院合作建立小型数据集,并使用基于阈值的过滤器和其他方法对图像进行预处理。在胃癌和胃病分型方面,DenseNet模型的ACC、F1评分和特异性SP均最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of Deep Learning on Gastric Cancer Diagnosis
Gastroscopy is the first method to check gastrointestinal cancer and related diseases. Traditional manual methods have the disadvantages of time-consuming, high missed diagnosis and misdiagnosis rates. Image recognition technology based on deep learning has great potential in improving diagnosis efficiency and accuracy. We summarize the latest advances in deep learning in gastric cancer diagnosis from the aspects of data sets, image preprocessing, and classification algorithms. Most research teams cooperate with hospitals to build small data sets, and preprocess the images using threshold-based filters and other methods. In terms of gastric cancer and gastric disease classification, the DenseNet model has the highest ACC, F1 score and specific SP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信