采用细胞神经网络设计的一种学习算法

F. Zou, S. Schwarz, J. Nossek
{"title":"采用细胞神经网络设计的一种学习算法","authors":"F. Zou, S. Schwarz, J. Nossek","doi":"10.1109/CNNA.1990.207509","DOIUrl":null,"url":null,"abstract":"A learning algorithm for cellular neural networks (CNN) is proposed. The cloning templates can be obtained by using this algorithm, which is based on the relaxation method for solving sets of linear inequalities. The symmetry of templates can be forced through additional equality constraints. Simulation examples show that some useful templates with the smallest neighborhood N/sub 1/(i, j) are generated by the application of the training rule.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Cellular neural network design using a learning algorithm\",\"authors\":\"F. Zou, S. Schwarz, J. Nossek\",\"doi\":\"10.1109/CNNA.1990.207509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A learning algorithm for cellular neural networks (CNN) is proposed. The cloning templates can be obtained by using this algorithm, which is based on the relaxation method for solving sets of linear inequalities. The symmetry of templates can be forced through additional equality constraints. Simulation examples show that some useful templates with the smallest neighborhood N/sub 1/(i, j) are generated by the application of the training rule.<<ETX>>\",\"PeriodicalId\":142909,\"journal\":{\"name\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1990.207509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

提出了一种细胞神经网络(CNN)的学习算法。该算法基于求解线性不等式集的松弛法,可以得到克隆模板。模板的对称性可以通过附加的等式约束来强制实现。仿真实例表明,应用该训练规则可以生成具有最小邻域N/sub 1/(i, j)的有用模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular neural network design using a learning algorithm
A learning algorithm for cellular neural networks (CNN) is proposed. The cloning templates can be obtained by using this algorithm, which is based on the relaxation method for solving sets of linear inequalities. The symmetry of templates can be forced through additional equality constraints. Simulation examples show that some useful templates with the smallest neighborhood N/sub 1/(i, j) are generated by the application of the training rule.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信