{"title":"仿射状态空间神经网络的阶数估计","authors":"P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos","doi":"10.1109/SMCIA.2005.1466961","DOIUrl":null,"url":null,"abstract":"The problem of order evaluation for an affine state-space neural network or equivalently the estimation of the number of neurons to be inserted in the hidden layer in a recurrent neural network is here addressed. The proposed method is based on a singular value decomposition applied to an oblique subspace projection given as the projection of the row space of future outputs into the past inputs-outputs row space, along the future inputs row space.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Order estimation in affine state-space neural networks\",\"authors\":\"P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos\",\"doi\":\"10.1109/SMCIA.2005.1466961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of order evaluation for an affine state-space neural network or equivalently the estimation of the number of neurons to be inserted in the hidden layer in a recurrent neural network is here addressed. The proposed method is based on a singular value decomposition applied to an oblique subspace projection given as the projection of the row space of future outputs into the past inputs-outputs row space, along the future inputs row space.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Order estimation in affine state-space neural networks
The problem of order evaluation for an affine state-space neural network or equivalently the estimation of the number of neurons to be inserted in the hidden layer in a recurrent neural network is here addressed. The proposed method is based on a singular value decomposition applied to an oblique subspace projection given as the projection of the row space of future outputs into the past inputs-outputs row space, along the future inputs row space.