观看、思考、反应:以人为中心的电影内容分析框架

Anan Liu, Zhaoxuan Yang
{"title":"观看、思考、反应:以人为中心的电影内容分析框架","authors":"Anan Liu, Zhaoxuan Yang","doi":"10.4156/JDCTA.VOL4.ISSUE5.3","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a human-centered framework, “Watching, Thinking, Reacting”, for movie content analysis. The framework consists of a hierarchy of three levels. The low level represents human perception to external stimuli, where the Weber-Fechner Law-based human attention model is constructed to extract movie highlights. The middle level simulates human cognition to semantic, where semantic descriptors are modeled for automatic semantic annotation. The high level imitates human actions based on perception and cognition, where an integrated graph with content and contextual information is proposed for movie highlights correlation and recommendation. Moreover, three recommendation strategies are presented. The promising results of subjective and objective evaluation indicate that the proposed framework can make not only computers intelligently understand movie content, but also provide personalized service for movie highlights recommendation to effectively lead audiences to preview new movies in an individualized manner.","PeriodicalId":293875,"journal":{"name":"J. Digit. Content Technol. its Appl.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Watching, Thinking, Reacting: A Human-Centered Framework for Movie Content Analysis\",\"authors\":\"Anan Liu, Zhaoxuan Yang\",\"doi\":\"10.4156/JDCTA.VOL4.ISSUE5.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a human-centered framework, “Watching, Thinking, Reacting”, for movie content analysis. The framework consists of a hierarchy of three levels. The low level represents human perception to external stimuli, where the Weber-Fechner Law-based human attention model is constructed to extract movie highlights. The middle level simulates human cognition to semantic, where semantic descriptors are modeled for automatic semantic annotation. The high level imitates human actions based on perception and cognition, where an integrated graph with content and contextual information is proposed for movie highlights correlation and recommendation. Moreover, three recommendation strategies are presented. The promising results of subjective and objective evaluation indicate that the proposed framework can make not only computers intelligently understand movie content, but also provide personalized service for movie highlights recommendation to effectively lead audiences to preview new movies in an individualized manner.\",\"PeriodicalId\":293875,\"journal\":{\"name\":\"J. Digit. Content Technol. its Appl.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Digit. Content Technol. its Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JDCTA.VOL4.ISSUE5.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Digit. Content Technol. its Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JDCTA.VOL4.ISSUE5.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一个以人为中心的电影内容分析框架——“观看、思考、反应”。该框架由三个层次结构组成。低层次代表人类对外部刺激的感知,构建基于Weber-Fechner定律的人类注意模型来提取电影亮点。中间层模拟人类对语义的认知,其中对语义描述符进行建模以实现自动语义注释。高级层次基于感知和认知模仿人类行为,其中提出了包含内容和上下文信息的集成图,用于电影亮点关联和推荐。提出了三种推荐策略。主观和客观评价结果表明,所提出的框架不仅可以使计算机智能理解电影内容,还可以为电影集锦推荐提供个性化服务,有效地引导观众以个性化的方式预览新片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Watching, Thinking, Reacting: A Human-Centered Framework for Movie Content Analysis
In this paper, we propose a human-centered framework, “Watching, Thinking, Reacting”, for movie content analysis. The framework consists of a hierarchy of three levels. The low level represents human perception to external stimuli, where the Weber-Fechner Law-based human attention model is constructed to extract movie highlights. The middle level simulates human cognition to semantic, where semantic descriptors are modeled for automatic semantic annotation. The high level imitates human actions based on perception and cognition, where an integrated graph with content and contextual information is proposed for movie highlights correlation and recommendation. Moreover, three recommendation strategies are presented. The promising results of subjective and objective evaluation indicate that the proposed framework can make not only computers intelligently understand movie content, but also provide personalized service for movie highlights recommendation to effectively lead audiences to preview new movies in an individualized manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信