面向展向分布式电力推进飞机尾翼面积减小研究

Garrett T. Klunk, J. Freeman, Benjamin T. Schiltgen
{"title":"面向展向分布式电力推进飞机尾翼面积减小研究","authors":"Garrett T. Klunk, J. Freeman, Benjamin T. Schiltgen","doi":"10.2514/6.2018-5022","DOIUrl":null,"url":null,"abstract":"Spanwise arrays of electrically driven propulsors may enable significant reductions to the required vertical tail area of an aircraft. The relationship between traditional empennage design and the driving requirements detailed in 14 CFR Part 25 was mapped, and the opportunities in which spanwise distributed electric propulsion could influence the empennage design were identified. The design of the electric microgrid that transmits and controls the flow of power to the propulsors was found to play a critical role in evaluating the potential merits of those opportunities. Careful design of the microgrid architecture was found to relax the asymmetric thrust design condition for the vertical tail to a point of irrelevance. Furthermore, active control of differential thrust between the propulsors could provide dynamic yaw stability to the aircraft, allowing the entire vertical tail to be removed. In contrast, however, a lighter weight microgrid architecture designed with no reconfigurability could exacerbate the asymmetric thrust and require a larger-than-nominal vertical tail. This paper explores the above opportunities and their associated costs as applied to the ECO-150 vision vehicle.","PeriodicalId":276296,"journal":{"name":"2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Tail Area Reduction for Aircraft with Spanwise Distributed Electric Propulsion\",\"authors\":\"Garrett T. Klunk, J. Freeman, Benjamin T. Schiltgen\",\"doi\":\"10.2514/6.2018-5022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spanwise arrays of electrically driven propulsors may enable significant reductions to the required vertical tail area of an aircraft. The relationship between traditional empennage design and the driving requirements detailed in 14 CFR Part 25 was mapped, and the opportunities in which spanwise distributed electric propulsion could influence the empennage design were identified. The design of the electric microgrid that transmits and controls the flow of power to the propulsors was found to play a critical role in evaluating the potential merits of those opportunities. Careful design of the microgrid architecture was found to relax the asymmetric thrust design condition for the vertical tail to a point of irrelevance. Furthermore, active control of differential thrust between the propulsors could provide dynamic yaw stability to the aircraft, allowing the entire vertical tail to be removed. In contrast, however, a lighter weight microgrid architecture designed with no reconfigurability could exacerbate the asymmetric thrust and require a larger-than-nominal vertical tail. This paper explores the above opportunities and their associated costs as applied to the ECO-150 vision vehicle.\",\"PeriodicalId\":276296,\"journal\":{\"name\":\"2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-5022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-5022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

电动推进器的展向阵列可以显著减少飞机所需的垂直尾翼面积。绘制了传统尾翼设计与14 CFR第25部分中详细描述的驱动要求之间的关系,并确定了跨向分布式电力推进可能影响尾翼设计的机会。研究发现,在评估这些机会的潜在价值时,传输和控制动力流向推进器的微电网的设计起着至关重要的作用。通过对微网结构的精心设计,可以将垂直尾翼的非对称推力设计条件放宽到无关紧要的程度。此外,主动控制推进器之间的推力差可以为飞机提供动态偏航稳定性,允许整个垂直尾翼被移除。然而,相比之下,重量较轻且不可重构的微电网结构可能会加剧不对称推力,并需要比标称垂直尾翼更大的垂直尾翼。本文探讨了应用于ECO-150视觉车辆的上述机会及其相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail Area Reduction for Aircraft with Spanwise Distributed Electric Propulsion
Spanwise arrays of electrically driven propulsors may enable significant reductions to the required vertical tail area of an aircraft. The relationship between traditional empennage design and the driving requirements detailed in 14 CFR Part 25 was mapped, and the opportunities in which spanwise distributed electric propulsion could influence the empennage design were identified. The design of the electric microgrid that transmits and controls the flow of power to the propulsors was found to play a critical role in evaluating the potential merits of those opportunities. Careful design of the microgrid architecture was found to relax the asymmetric thrust design condition for the vertical tail to a point of irrelevance. Furthermore, active control of differential thrust between the propulsors could provide dynamic yaw stability to the aircraft, allowing the entire vertical tail to be removed. In contrast, however, a lighter weight microgrid architecture designed with no reconfigurability could exacerbate the asymmetric thrust and require a larger-than-nominal vertical tail. This paper explores the above opportunities and their associated costs as applied to the ECO-150 vision vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信