平面去加工中的芯片重组方法——芯片边缘缺陷失效分析的一种解决方案

K. C. Cheong, Gabriel Pragay, Wiwy Wudjud, Rafael Lainez
{"title":"平面去加工中的芯片重组方法——芯片边缘缺陷失效分析的一种解决方案","authors":"K. C. Cheong, Gabriel Pragay, Wiwy Wudjud, Rafael Lainez","doi":"10.31399/asm.cp.istfa2021p0269","DOIUrl":null,"url":null,"abstract":"\n Planar deprocessing is a vital failure analysis (FA) technique for semiconductor chip reverse engineering. The basic concept of planar deprocessing is to remove all the “unnecessary” materials of a chip to expose an area of interest (AOI) and maintain the chip planarity and surface evenness. Finger deprocessing is one of the common techniques applied to this concept. This technique is essential in physical FA, especially for advanced bulk fin field-effect transistor (FinFET) devices. The success of finger deprocessing technique depends on certain factors, one of which is the location of AOI region. Application of finger deprocessing becomes incredibly challenging for AOI close to chip edge due to the chip edge effect, i. e. the chip edge is deprocessed much faster than the chip center. Plasma focused ion beam (PFIB) planar deprocessing is the primary solution to solve this problem. However, the PFIB capability is a luxury tool for most analysis labs. To overcome this challenge, a novel chip recombination method is introduced. With this method, planar deprocess can be achieved by conventional finger deprocessing technique and more importantly can be applied in general analysis labs. This paper will discuss the newly developed method in a step-by-step guide basis and show two cases with AOI(s) in the chip edge region to demonstrate its capability.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chip Recombination Method in Planar Deprocessing – A Solution for Failure Analysis on Chip Edge Defects\",\"authors\":\"K. C. Cheong, Gabriel Pragay, Wiwy Wudjud, Rafael Lainez\",\"doi\":\"10.31399/asm.cp.istfa2021p0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Planar deprocessing is a vital failure analysis (FA) technique for semiconductor chip reverse engineering. The basic concept of planar deprocessing is to remove all the “unnecessary” materials of a chip to expose an area of interest (AOI) and maintain the chip planarity and surface evenness. Finger deprocessing is one of the common techniques applied to this concept. This technique is essential in physical FA, especially for advanced bulk fin field-effect transistor (FinFET) devices. The success of finger deprocessing technique depends on certain factors, one of which is the location of AOI region. Application of finger deprocessing becomes incredibly challenging for AOI close to chip edge due to the chip edge effect, i. e. the chip edge is deprocessed much faster than the chip center. Plasma focused ion beam (PFIB) planar deprocessing is the primary solution to solve this problem. However, the PFIB capability is a luxury tool for most analysis labs. To overcome this challenge, a novel chip recombination method is introduced. With this method, planar deprocess can be achieved by conventional finger deprocessing technique and more importantly can be applied in general analysis labs. This paper will discuss the newly developed method in a step-by-step guide basis and show two cases with AOI(s) in the chip edge region to demonstrate its capability.\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平面去处理是半导体芯片逆向工程中一项重要的失效分析技术。平面去处理的基本概念是去除芯片上所有“不必要”的材料以暴露感兴趣区域(AOI)并保持芯片的平面度和表面均匀性。手指去处理是应用于这一概念的常见技术之一。这种技术在物理FA中是必不可少的,特别是对于先进的体翅片场效应晶体管(FinFET)器件。手指去处理技术的成功与否取决于若干因素,其中之一就是AOI区域的位置。对于靠近芯片边缘的AOI,由于芯片边缘效应,即芯片边缘的去处理速度比芯片中心快得多,因此手指去处理的应用变得非常具有挑战性。等离子体聚焦离子束(PFIB)平面预处理是解决这一问题的主要方法。然而,对于大多数分析实验室来说,PFIB功能是一种奢侈的工具。为了克服这一挑战,提出了一种新的芯片重组方法。该方法不仅可以实现传统手指去处理技术的平面去处理,更重要的是可以应用于一般的分析实验室。本文将逐步讨论新开发的方法,并展示两个在芯片边缘区域具有AOI(s)的案例来演示其能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chip Recombination Method in Planar Deprocessing – A Solution for Failure Analysis on Chip Edge Defects
Planar deprocessing is a vital failure analysis (FA) technique for semiconductor chip reverse engineering. The basic concept of planar deprocessing is to remove all the “unnecessary” materials of a chip to expose an area of interest (AOI) and maintain the chip planarity and surface evenness. Finger deprocessing is one of the common techniques applied to this concept. This technique is essential in physical FA, especially for advanced bulk fin field-effect transistor (FinFET) devices. The success of finger deprocessing technique depends on certain factors, one of which is the location of AOI region. Application of finger deprocessing becomes incredibly challenging for AOI close to chip edge due to the chip edge effect, i. e. the chip edge is deprocessed much faster than the chip center. Plasma focused ion beam (PFIB) planar deprocessing is the primary solution to solve this problem. However, the PFIB capability is a luxury tool for most analysis labs. To overcome this challenge, a novel chip recombination method is introduced. With this method, planar deprocess can be achieved by conventional finger deprocessing technique and more importantly can be applied in general analysis labs. This paper will discuss the newly developed method in a step-by-step guide basis and show two cases with AOI(s) in the chip edge region to demonstrate its capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信