支持类斑点表面等离子激元的金属阵列圆二色性的推广

Xiaojie Guo, C. Liu, H. Ong
{"title":"支持类斑点表面等离子激元的金属阵列圆二色性的推广","authors":"Xiaojie Guo, C. Liu, H. Ong","doi":"10.1103/PHYSREVAPPLIED.15.024048","DOIUrl":null,"url":null,"abstract":"The broken mirror symmetry in subwavelength photonic systems has manifested many interesting chiroptical effects such as optical rotation and circular dichroism. When such systems are placed periodically in a lattice form, in addition to intrinsic chirality, extrinsic chirality also takes part, and the overall effect depends not only on the basis and lattice but also the excitation configuration. Here, we study planar chiral nanohole arrays in square lattice that support Bloch-like surface plasmon polaritons (SPPs) and clarify how the system geometry and the excitation contribute to circular dichroism. By using temporal coupled mode theory (CMT), the dissymmetry factor and the scattering matrix of the arrays are analytically formulated. Remarkably, we find the dissymmetry factor depends only on the coupling polarization angle and the in-coupling phase difference between the p- and s-polarizations. Besides, the upper limit of the dissymmetry factor at +/-2 can be reached simply by orienting the lattice of the arrays for properly exciting the Bloch-like SPPs and at the same time making the basis mimic two orthogonal and relatively displaced dipoles, demonstrating the interplay between extrinsic and intrinsic chirality. The models have been verified by numerical simulations and experiments, yielding the dissymmetry factors to be 1.82 and 1.55, respectively, from the proposed dual slot system.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalization of the Circular Dichroism from Metallic Arrays That Support Bloch-Like Surface Plasmon Polaritons\",\"authors\":\"Xiaojie Guo, C. Liu, H. Ong\",\"doi\":\"10.1103/PHYSREVAPPLIED.15.024048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The broken mirror symmetry in subwavelength photonic systems has manifested many interesting chiroptical effects such as optical rotation and circular dichroism. When such systems are placed periodically in a lattice form, in addition to intrinsic chirality, extrinsic chirality also takes part, and the overall effect depends not only on the basis and lattice but also the excitation configuration. Here, we study planar chiral nanohole arrays in square lattice that support Bloch-like surface plasmon polaritons (SPPs) and clarify how the system geometry and the excitation contribute to circular dichroism. By using temporal coupled mode theory (CMT), the dissymmetry factor and the scattering matrix of the arrays are analytically formulated. Remarkably, we find the dissymmetry factor depends only on the coupling polarization angle and the in-coupling phase difference between the p- and s-polarizations. Besides, the upper limit of the dissymmetry factor at +/-2 can be reached simply by orienting the lattice of the arrays for properly exciting the Bloch-like SPPs and at the same time making the basis mimic two orthogonal and relatively displaced dipoles, demonstrating the interplay between extrinsic and intrinsic chirality. The models have been verified by numerical simulations and experiments, yielding the dissymmetry factors to be 1.82 and 1.55, respectively, from the proposed dual slot system.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVAPPLIED.15.024048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.024048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

亚波长光子系统的破镜对称性表现出许多有趣的旋光效应,如旋光性和圆二色性。当这样的体系周期性地以晶格形式放置时,除了固有手性外,外在手性也起作用,总体效果不仅取决于基和晶格,还取决于激发构型。在这里,我们研究了支持类布洛赫表面等离子激元(SPPs)的方形晶格平面手性纳米孔阵列,并阐明了系统几何形状和激发对圆二色性的影响。利用时间耦合模式理论(CMT),对阵列的不对称性因子和散射矩阵进行了解析表达式。值得注意的是,我们发现不对称因子仅取决于耦合极化角和p极化和s极化之间的耦合相位差。此外,不对称因子在+/-2处的上限可以简单地通过定向阵列晶格来适当地激发Bloch-like SPPs,同时使基模拟两个正交且相对位移的偶极子来达到,证明了外在手性和内在手性之间的相互作用。通过数值模拟和实验对模型进行了验证,得出双槽系统的不对称系数分别为1.82和1.55。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of the Circular Dichroism from Metallic Arrays That Support Bloch-Like Surface Plasmon Polaritons
The broken mirror symmetry in subwavelength photonic systems has manifested many interesting chiroptical effects such as optical rotation and circular dichroism. When such systems are placed periodically in a lattice form, in addition to intrinsic chirality, extrinsic chirality also takes part, and the overall effect depends not only on the basis and lattice but also the excitation configuration. Here, we study planar chiral nanohole arrays in square lattice that support Bloch-like surface plasmon polaritons (SPPs) and clarify how the system geometry and the excitation contribute to circular dichroism. By using temporal coupled mode theory (CMT), the dissymmetry factor and the scattering matrix of the arrays are analytically formulated. Remarkably, we find the dissymmetry factor depends only on the coupling polarization angle and the in-coupling phase difference between the p- and s-polarizations. Besides, the upper limit of the dissymmetry factor at +/-2 can be reached simply by orienting the lattice of the arrays for properly exciting the Bloch-like SPPs and at the same time making the basis mimic two orthogonal and relatively displaced dipoles, demonstrating the interplay between extrinsic and intrinsic chirality. The models have been verified by numerical simulations and experiments, yielding the dissymmetry factors to be 1.82 and 1.55, respectively, from the proposed dual slot system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信