{"title":"相场模型的有效数值方法","authors":"T. Tang","doi":"10.1142/9789813272880_0196","DOIUrl":null,"url":null,"abstract":"In this article, we overview recent developments of modern computational methods for the approximate solution of phase-field problems. The main difficulty for developing a numerical method for phase field equations is a severe stability restriction on the time step due to nonlinearity and high order differential terms. It is known that the phase field models satisfy a nonlinear stability relationship called gradient stability, usually expressed as a time-decreasing free-energy functional. This property has been used recently to derive numerical schemes that inherit the gradient stability. The first part of the article will discuss implicit-explicit time discretizations which satisfy the energy stability. The second part is to discuss time-adaptive strategies for solving the phase-field problems, which is motivated by the observation that the energy functionals decay with time smoothly except at a few critical time levels. The classical operator-splitting method is a useful tool in time discrtization. In the final part, we will provide some preliminary results using operator-splitting approach.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD MODELS\",\"authors\":\"T. Tang\",\"doi\":\"10.1142/9789813272880_0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we overview recent developments of modern computational methods for the approximate solution of phase-field problems. The main difficulty for developing a numerical method for phase field equations is a severe stability restriction on the time step due to nonlinearity and high order differential terms. It is known that the phase field models satisfy a nonlinear stability relationship called gradient stability, usually expressed as a time-decreasing free-energy functional. This property has been used recently to derive numerical schemes that inherit the gradient stability. The first part of the article will discuss implicit-explicit time discretizations which satisfy the energy stability. The second part is to discuss time-adaptive strategies for solving the phase-field problems, which is motivated by the observation that the energy functionals decay with time smoothly except at a few critical time levels. The classical operator-splitting method is a useful tool in time discrtization. In the final part, we will provide some preliminary results using operator-splitting approach.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON EFFECTIVE NUMERICAL METHODS FOR PHASE-FIELD MODELS
In this article, we overview recent developments of modern computational methods for the approximate solution of phase-field problems. The main difficulty for developing a numerical method for phase field equations is a severe stability restriction on the time step due to nonlinearity and high order differential terms. It is known that the phase field models satisfy a nonlinear stability relationship called gradient stability, usually expressed as a time-decreasing free-energy functional. This property has been used recently to derive numerical schemes that inherit the gradient stability. The first part of the article will discuss implicit-explicit time discretizations which satisfy the energy stability. The second part is to discuss time-adaptive strategies for solving the phase-field problems, which is motivated by the observation that the energy functionals decay with time smoothly except at a few critical time levels. The classical operator-splitting method is a useful tool in time discrtization. In the final part, we will provide some preliminary results using operator-splitting approach.