中国商品期货市场的配对交易:自适应协整方法

Danni Chen, Jing Cui, Yan Gao, Leilei Wu
{"title":"中国商品期货市场的配对交易:自适应协整方法","authors":"Danni Chen, Jing Cui, Yan Gao, Leilei Wu","doi":"10.1111/acfi.12335","DOIUrl":null,"url":null,"abstract":"This study comprehensively examines pairs trading in Chinese commodity futures markets, which, although less researched, represents an important scenario for analysing commodity price behaviour. Based on a sample of daily future returns from 2006 to 2016, we propose a cointegration model that employs an adaptive learning process, and we show that our model yields an average annualised return of 26.94 percent before trading costs, using a closed‐loop strategy. Our results are robust to various tests, including parameter uncertainty, holding period constraints, trading period selection and trading costs.","PeriodicalId":306457,"journal":{"name":"ERN: Futures (Topic)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Pairs Trading in Chinese Commodity Futures Markets: An Adaptive Cointegration Approach\",\"authors\":\"Danni Chen, Jing Cui, Yan Gao, Leilei Wu\",\"doi\":\"10.1111/acfi.12335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study comprehensively examines pairs trading in Chinese commodity futures markets, which, although less researched, represents an important scenario for analysing commodity price behaviour. Based on a sample of daily future returns from 2006 to 2016, we propose a cointegration model that employs an adaptive learning process, and we show that our model yields an average annualised return of 26.94 percent before trading costs, using a closed‐loop strategy. Our results are robust to various tests, including parameter uncertainty, holding period constraints, trading period selection and trading costs.\",\"PeriodicalId\":306457,\"journal\":{\"name\":\"ERN: Futures (Topic)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Futures (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/acfi.12335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Futures (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究全面考察了中国商品期货市场的配对交易,尽管研究较少,但它代表了分析商品价格行为的重要场景。基于2006年至2016年的每日未来回报样本,我们提出了一个采用自适应学习过程的协整模型,并且我们表明,我们的模型使用闭环策略,在交易成本之前的平均年化回报率为26.94%。我们的结果对包括参数不确定性、持有期约束、交易期选择和交易成本在内的各种测试具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pairs Trading in Chinese Commodity Futures Markets: An Adaptive Cointegration Approach
This study comprehensively examines pairs trading in Chinese commodity futures markets, which, although less researched, represents an important scenario for analysing commodity price behaviour. Based on a sample of daily future returns from 2006 to 2016, we propose a cointegration model that employs an adaptive learning process, and we show that our model yields an average annualised return of 26.94 percent before trading costs, using a closed‐loop strategy. Our results are robust to various tests, including parameter uncertainty, holding period constraints, trading period selection and trading costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信