基于概率分析的任务相关动作序列的增量学习

Kyuhwa Lee, Y. Demiris
{"title":"基于概率分析的任务相关动作序列的增量学习","authors":"Kyuhwa Lee, Y. Demiris","doi":"10.1109/DEVLRN.2011.6037332","DOIUrl":null,"url":null,"abstract":"We study an incremental process of learning where a set of generic basic actions are used to learn higher-level task-dependent action sequences. A task-dependent action sequence is learned by associating the goal given by a human demonstrator with the task-independent, general-purpose actions in the action repertoire. This process of contextualization is done using probabilistic parsing. We propose stochastic context-free grammars as the representational framework due to its robustness to noise, structural flexibility, and easiness on defining task-independent actions. We demonstrate our implementation on a real-world scenario using a humanoid robot and report implementation issues we had.","PeriodicalId":256921,"journal":{"name":"2011 IEEE International Conference on Development and Learning (ICDL)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards incremental learning of task-dependent action sequences using probabilistic parsing\",\"authors\":\"Kyuhwa Lee, Y. Demiris\",\"doi\":\"10.1109/DEVLRN.2011.6037332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study an incremental process of learning where a set of generic basic actions are used to learn higher-level task-dependent action sequences. A task-dependent action sequence is learned by associating the goal given by a human demonstrator with the task-independent, general-purpose actions in the action repertoire. This process of contextualization is done using probabilistic parsing. We propose stochastic context-free grammars as the representational framework due to its robustness to noise, structural flexibility, and easiness on defining task-independent actions. We demonstrate our implementation on a real-world scenario using a humanoid robot and report implementation issues we had.\",\"PeriodicalId\":256921,\"journal\":{\"name\":\"2011 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2011.6037332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2011.6037332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们研究了一个渐进的学习过程,其中一组通用的基本动作被用来学习更高层次的任务相关动作序列。通过将人类演示者给出的目标与动作表中与任务无关的通用动作相关联,可以学习与任务相关的动作序列。这种上下文化过程是使用概率解析完成的。我们提出随机上下文无关语法作为表征框架,因为它对噪声具有鲁棒性、结构灵活性和易于定义任务无关动作。我们使用人形机器人在真实场景中演示我们的实现,并报告我们遇到的实现问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards incremental learning of task-dependent action sequences using probabilistic parsing
We study an incremental process of learning where a set of generic basic actions are used to learn higher-level task-dependent action sequences. A task-dependent action sequence is learned by associating the goal given by a human demonstrator with the task-independent, general-purpose actions in the action repertoire. This process of contextualization is done using probabilistic parsing. We propose stochastic context-free grammars as the representational framework due to its robustness to noise, structural flexibility, and easiness on defining task-independent actions. We demonstrate our implementation on a real-world scenario using a humanoid robot and report implementation issues we had.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信