DFT域自适应图像隐写的元启发式优化效率研究

A. Melman, O. Evsutin
{"title":"DFT域自适应图像隐写的元启发式优化效率研究","authors":"A. Melman, O. Evsutin","doi":"10.1109/REDUNDANCY52534.2021.9606459","DOIUrl":null,"url":null,"abstract":"Adaptive embedding is a popular area of image steganography. Adaptability means the use of cover image features in the embedding process. In many cases, the embedding adaptability is associated with choosing the best position of the message bits in the image. However, the total check of all possible options for the message fragment is redundant in most cases. This leads us to the optimization problem. In this paper, we investigate the applicability of some classical metaheuristic optimization algorithms for solving the problem of increasing the efficiency of adaptive embedding of information into the discrete Fourier transform phase spectrum. We consider three popular optimization algorithms: the genetic algorithm, the differential evolution algorithm, and the particle swarm optimization algorithm. The experimental results show that the particle swarm optimization algorithm can significantly increase the embedding capacity, while the imperceptibility also improves or remains at the same level, and the embedded information is extracted without any errors.","PeriodicalId":408692,"journal":{"name":"2021 XVII International Symposium \"Problems of Redundancy in Information and Control Systems\" (REDUNDANCY)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Efficiency of Metaheuristic Optimization for Adaptive Image Steganography in the DFT Domain\",\"authors\":\"A. Melman, O. Evsutin\",\"doi\":\"10.1109/REDUNDANCY52534.2021.9606459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive embedding is a popular area of image steganography. Adaptability means the use of cover image features in the embedding process. In many cases, the embedding adaptability is associated with choosing the best position of the message bits in the image. However, the total check of all possible options for the message fragment is redundant in most cases. This leads us to the optimization problem. In this paper, we investigate the applicability of some classical metaheuristic optimization algorithms for solving the problem of increasing the efficiency of adaptive embedding of information into the discrete Fourier transform phase spectrum. We consider three popular optimization algorithms: the genetic algorithm, the differential evolution algorithm, and the particle swarm optimization algorithm. The experimental results show that the particle swarm optimization algorithm can significantly increase the embedding capacity, while the imperceptibility also improves or remains at the same level, and the embedded information is extracted without any errors.\",\"PeriodicalId\":408692,\"journal\":{\"name\":\"2021 XVII International Symposium \\\"Problems of Redundancy in Information and Control Systems\\\" (REDUNDANCY)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XVII International Symposium \\\"Problems of Redundancy in Information and Control Systems\\\" (REDUNDANCY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUNDANCY52534.2021.9606459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XVII International Symposium \"Problems of Redundancy in Information and Control Systems\" (REDUNDANCY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUNDANCY52534.2021.9606459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自适应嵌入是图像隐写的一个热门领域。适应性是指在嵌入过程中对封面图像特征的利用。在许多情况下,嵌入适应性与选择消息位在图像中的最佳位置有关。但是,在大多数情况下,对消息片段的所有可能选项进行检查是多余的。这就引出了优化问题。本文研究了一些经典的元启发式优化算法在提高离散傅里叶变换相谱自适应嵌入信息效率方面的适用性。我们考虑了三种流行的优化算法:遗传算法、差分进化算法和粒子群优化算法。实验结果表明,粒子群优化算法可以显著提高嵌入容量,同时不可感知性也提高或保持不变,并且嵌入信息的提取没有任何误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Efficiency of Metaheuristic Optimization for Adaptive Image Steganography in the DFT Domain
Adaptive embedding is a popular area of image steganography. Adaptability means the use of cover image features in the embedding process. In many cases, the embedding adaptability is associated with choosing the best position of the message bits in the image. However, the total check of all possible options for the message fragment is redundant in most cases. This leads us to the optimization problem. In this paper, we investigate the applicability of some classical metaheuristic optimization algorithms for solving the problem of increasing the efficiency of adaptive embedding of information into the discrete Fourier transform phase spectrum. We consider three popular optimization algorithms: the genetic algorithm, the differential evolution algorithm, and the particle swarm optimization algorithm. The experimental results show that the particle swarm optimization algorithm can significantly increase the embedding capacity, while the imperceptibility also improves or remains at the same level, and the embedded information is extracted without any errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信