{"title":"通过视频分析实现快速准确的亲密接触识别","authors":"Yuhao Luo, Hengjing Zhang, Hengchang Liu","doi":"10.1109/IPTA54936.2022.9784118","DOIUrl":null,"url":null,"abstract":"Intimate contact recognition has gained more attention in academia field in recent years due to the outbreak of Covid-19. However, state of the art solutions suffer from either inefficient accuracy or high cost. In this paper, we propose a novel method for COVID-19 intimate contact recognition in public spaces through video camera networks (CCTV). This method leverages distance detection and re-Identification algorithms, so pedestrians in close contact are re-identified, their identity information is obtained and stored in a database to realize contact tracing. We compare different social distance detection algorithms and the Faster-RCNN model outperforms other al-ternatives in terms of running speed. We also evaluate our Re-Identification model on two types of indicators in the PETS2009 dataset: mAP reaches 85.1%; rank-1, rank-5, and rank-10 reach 97.8%, 98.9%, and 98.9%, respectively. Experimental results demonstrate that our solution can be effectively applied in public places to realize fast and accurate automatic contact tracing.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Fast and Accurate Intimate Contact Recognition through Video Analysis\",\"authors\":\"Yuhao Luo, Hengjing Zhang, Hengchang Liu\",\"doi\":\"10.1109/IPTA54936.2022.9784118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intimate contact recognition has gained more attention in academia field in recent years due to the outbreak of Covid-19. However, state of the art solutions suffer from either inefficient accuracy or high cost. In this paper, we propose a novel method for COVID-19 intimate contact recognition in public spaces through video camera networks (CCTV). This method leverages distance detection and re-Identification algorithms, so pedestrians in close contact are re-identified, their identity information is obtained and stored in a database to realize contact tracing. We compare different social distance detection algorithms and the Faster-RCNN model outperforms other al-ternatives in terms of running speed. We also evaluate our Re-Identification model on two types of indicators in the PETS2009 dataset: mAP reaches 85.1%; rank-1, rank-5, and rank-10 reach 97.8%, 98.9%, and 98.9%, respectively. Experimental results demonstrate that our solution can be effectively applied in public places to realize fast and accurate automatic contact tracing.\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Fast and Accurate Intimate Contact Recognition through Video Analysis
Intimate contact recognition has gained more attention in academia field in recent years due to the outbreak of Covid-19. However, state of the art solutions suffer from either inefficient accuracy or high cost. In this paper, we propose a novel method for COVID-19 intimate contact recognition in public spaces through video camera networks (CCTV). This method leverages distance detection and re-Identification algorithms, so pedestrians in close contact are re-identified, their identity information is obtained and stored in a database to realize contact tracing. We compare different social distance detection algorithms and the Faster-RCNN model outperforms other al-ternatives in terms of running speed. We also evaluate our Re-Identification model on two types of indicators in the PETS2009 dataset: mAP reaches 85.1%; rank-1, rank-5, and rank-10 reach 97.8%, 98.9%, and 98.9%, respectively. Experimental results demonstrate that our solution can be effectively applied in public places to realize fast and accurate automatic contact tracing.