用于PCB保证和假冒检测的标识分类和数据增强技术

Mukhil Azhagan Mallaiyan Sathiaseelan, Olivia P. Paradis, Rajat Rai, Suryaprakash Vasudev Pandurangi, Manoj Yasaswi Vutukuru, S. Taheri, N. Asadizanjani
{"title":"用于PCB保证和假冒检测的标识分类和数据增强技术","authors":"Mukhil Azhagan Mallaiyan Sathiaseelan, Olivia P. Paradis, Rajat Rai, Suryaprakash Vasudev Pandurangi, Manoj Yasaswi Vutukuru, S. Taheri, N. Asadizanjani","doi":"10.31399/asm.cp.istfa2021p0012","DOIUrl":null,"url":null,"abstract":"\n In this manuscript, we present our work on Logo classification in PCBs for Hardware assurance purposes. Identifying and classifying logos have important uses for text detection, component authentication and counterfeit detection. Since PCB assurance faces the lack of a representative dataset for classification and detection tasks, we collect different variants of logos from PCBs and present data augmentation techniques to create the necessary data to perform machine learning. In addition to exploring the challenges for image classification tasks in PCBs, we present experiments using Random Forest classifiers, Bag of Visual Words (BoVW) using SIFT and ORB Fully Connected Neural Networks (FCN) and Convolutional Neural Network (CNN) architectures. We present results and also a discussion on the edge cases where our algorithms fail including the potential for future work in PCB logo detection. The code for the algorithms along with the dataset that includes 18 classes of logos with 14000+ images is provided at this link: https://www.trusthub.org/#/data\n Index Terms—AutoBoM, Logo classification, Data augmentation, Bill of materials, PCB Assurance, Hardware Assurance, Counterfeit avoidance","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Logo Classification and Data Augmentation Techniques for PCB Assurance and Counterfeit Detection\",\"authors\":\"Mukhil Azhagan Mallaiyan Sathiaseelan, Olivia P. Paradis, Rajat Rai, Suryaprakash Vasudev Pandurangi, Manoj Yasaswi Vutukuru, S. Taheri, N. Asadizanjani\",\"doi\":\"10.31399/asm.cp.istfa2021p0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this manuscript, we present our work on Logo classification in PCBs for Hardware assurance purposes. Identifying and classifying logos have important uses for text detection, component authentication and counterfeit detection. Since PCB assurance faces the lack of a representative dataset for classification and detection tasks, we collect different variants of logos from PCBs and present data augmentation techniques to create the necessary data to perform machine learning. In addition to exploring the challenges for image classification tasks in PCBs, we present experiments using Random Forest classifiers, Bag of Visual Words (BoVW) using SIFT and ORB Fully Connected Neural Networks (FCN) and Convolutional Neural Network (CNN) architectures. We present results and also a discussion on the edge cases where our algorithms fail including the potential for future work in PCB logo detection. The code for the algorithms along with the dataset that includes 18 classes of logos with 14000+ images is provided at this link: https://www.trusthub.org/#/data\\n Index Terms—AutoBoM, Logo classification, Data augmentation, Bill of materials, PCB Assurance, Hardware Assurance, Counterfeit avoidance\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这份手稿中,我们介绍了我们在pcb中用于硬件保证目的的徽标分类方面的工作。标识的识别与分类在文本检测、成分认证和假冒检测等方面有着重要的应用。由于PCB保证面临缺乏用于分类和检测任务的代表性数据集,我们从PCB中收集不同的徽标变体,并提出数据增强技术,以创建执行机器学习所需的数据。除了探索pcb中图像分类任务的挑战之外,我们还介绍了使用随机森林分类器的实验,使用SIFT和ORB全连接神经网络(FCN)和卷积神经网络(CNN)架构的视觉词袋(BoVW)。我们提出了结果,并讨论了我们的算法失败的边缘情况,包括PCB标识检测中未来工作的潜力。算法代码以及包含18类带有14000多个图像的徽标的数据集在此链接中提供:https://www.trusthub.org/#/data索引术语-自动bom,徽标分类,数据增强,物料清单,PCB保证,硬件保证,防伪
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logo Classification and Data Augmentation Techniques for PCB Assurance and Counterfeit Detection
In this manuscript, we present our work on Logo classification in PCBs for Hardware assurance purposes. Identifying and classifying logos have important uses for text detection, component authentication and counterfeit detection. Since PCB assurance faces the lack of a representative dataset for classification and detection tasks, we collect different variants of logos from PCBs and present data augmentation techniques to create the necessary data to perform machine learning. In addition to exploring the challenges for image classification tasks in PCBs, we present experiments using Random Forest classifiers, Bag of Visual Words (BoVW) using SIFT and ORB Fully Connected Neural Networks (FCN) and Convolutional Neural Network (CNN) architectures. We present results and also a discussion on the edge cases where our algorithms fail including the potential for future work in PCB logo detection. The code for the algorithms along with the dataset that includes 18 classes of logos with 14000+ images is provided at this link: https://www.trusthub.org/#/data Index Terms—AutoBoM, Logo classification, Data augmentation, Bill of materials, PCB Assurance, Hardware Assurance, Counterfeit avoidance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信