Ku和Ka波段星地移动信道云损伤分析与建模

A. Al-Saegh, A. Sali, A. Ismail, J. S. Mandeep
{"title":"Ku和Ka波段星地移动信道云损伤分析与建模","authors":"A. Al-Saegh, A. Sali, A. Ismail, J. S. Mandeep","doi":"10.1109/ASMS-SPSC.2014.6934579","DOIUrl":null,"url":null,"abstract":"Cloud impairments have significant effect on signal propagated in the satellite to land stationary terminals channel at frequencies above 10 GHz. With the recent satellite to land mobile terminals network technologies and services that use these frequencies, there is a lack of channel impairments modeling and analysis for such type of link. This study presents a reliable channel model of satellite-to-land mobile terminals that consider dynamic cloudy weather impairments. The cloud's dynamic parameters and their effect on the Rician factor are modeled. The model involves modules that design multipath signals, direct clear line-of-sight (LOS) normalized signals, and cloud impairments. Results show that a considerable change occurs in the performance of the signal propagated through the cloud. The change appears as deviations in the fade depth and the variance of the propagated signal in the link between the satellite and the land mobile terminals. The channel model is a realistic approach to the link characteristics, which satellite systems designers should consider when designing high data rate satellite systems.","PeriodicalId":192172,"journal":{"name":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis and modeling of the cloud impairments of satellite-to-land mobile channel at Ku and Ka bands\",\"authors\":\"A. Al-Saegh, A. Sali, A. Ismail, J. S. Mandeep\",\"doi\":\"10.1109/ASMS-SPSC.2014.6934579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud impairments have significant effect on signal propagated in the satellite to land stationary terminals channel at frequencies above 10 GHz. With the recent satellite to land mobile terminals network technologies and services that use these frequencies, there is a lack of channel impairments modeling and analysis for such type of link. This study presents a reliable channel model of satellite-to-land mobile terminals that consider dynamic cloudy weather impairments. The cloud's dynamic parameters and their effect on the Rician factor are modeled. The model involves modules that design multipath signals, direct clear line-of-sight (LOS) normalized signals, and cloud impairments. Results show that a considerable change occurs in the performance of the signal propagated through the cloud. The change appears as deviations in the fade depth and the variance of the propagated signal in the link between the satellite and the land mobile terminals. The channel model is a realistic approach to the link characteristics, which satellite systems designers should consider when designing high data rate satellite systems.\",\"PeriodicalId\":192172,\"journal\":{\"name\":\"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMS-SPSC.2014.6934579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMS-SPSC.2014.6934579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在10ghz以上频率下,云的干扰对卫星到地面固定终端信道的信号传播有显著影响。随着最近卫星到地面移动终端网络技术和业务使用这些频率,缺乏对这类链路的信道损伤建模和分析。本研究提出了考虑动态多云天气损害的星对地移动终端的可靠信道模型。模拟了云的动态参数及其对系数的影响。该模型包括设计多路径信号、直接清晰视距(LOS)归一化信号和云损伤的模块。结果表明,信号通过云传播的性能发生了相当大的变化。这种变化表现为卫星与陆地移动终端之间的链路中衰减深度的偏差和传播信号的方差。信道模型是分析链路特性的一种现实方法,是卫星系统设计者在设计高数据速率卫星系统时应考虑的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and modeling of the cloud impairments of satellite-to-land mobile channel at Ku and Ka bands
Cloud impairments have significant effect on signal propagated in the satellite to land stationary terminals channel at frequencies above 10 GHz. With the recent satellite to land mobile terminals network technologies and services that use these frequencies, there is a lack of channel impairments modeling and analysis for such type of link. This study presents a reliable channel model of satellite-to-land mobile terminals that consider dynamic cloudy weather impairments. The cloud's dynamic parameters and their effect on the Rician factor are modeled. The model involves modules that design multipath signals, direct clear line-of-sight (LOS) normalized signals, and cloud impairments. Results show that a considerable change occurs in the performance of the signal propagated through the cloud. The change appears as deviations in the fade depth and the variance of the propagated signal in the link between the satellite and the land mobile terminals. The channel model is a realistic approach to the link characteristics, which satellite systems designers should consider when designing high data rate satellite systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信