基于遗传模糊系统的交通数据空间插值

D. Ichiba, K. Hara, H. Kanoh
{"title":"基于遗传模糊系统的交通数据空间插值","authors":"D. Ichiba, K. Hara, H. Kanoh","doi":"10.1109/ISEFS.2006.251176","DOIUrl":null,"url":null,"abstract":"We propose a method to interpolate traffic data of roads using genetic fuzzy systems (GFSs). In Japan, car navigation equipment provides drivers with real-time traffic information about principal roads. The information enables giving route guidance. In a previous study, the problem of the method lies in the following two facts because a human designs membership functions of fuzzy c-means (FCM) experientially. One fact is that the design cost is high; the other is that tuning membership functions optimally is difficult. We automatically tune membership functions using a genetic algorithm (GA). The membership functions are encoded as a chromosome of GA, and the average of mean daily errors calculated from actual traffic data is used as a fitness function. Experiments using actual traffic data and an actual road map indicate that our method is more effective than the conventional method","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spatial Interpolation of Traffic Data by Genetic Fuzzy System\",\"authors\":\"D. Ichiba, K. Hara, H. Kanoh\",\"doi\":\"10.1109/ISEFS.2006.251176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to interpolate traffic data of roads using genetic fuzzy systems (GFSs). In Japan, car navigation equipment provides drivers with real-time traffic information about principal roads. The information enables giving route guidance. In a previous study, the problem of the method lies in the following two facts because a human designs membership functions of fuzzy c-means (FCM) experientially. One fact is that the design cost is high; the other is that tuning membership functions optimally is difficult. We automatically tune membership functions using a genetic algorithm (GA). The membership functions are encoded as a chromosome of GA, and the average of mean daily errors calculated from actual traffic data is used as a fitness function. Experiments using actual traffic data and an actual road map indicate that our method is more effective than the conventional method\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种利用遗传模糊系统(gfs)插值道路交通数据的方法。在日本,汽车导航设备为驾驶员提供主要道路的实时交通信息。这些信息可以提供路线指导。在以往的研究中,由于人是经验地设计模糊c均值(FCM)的隶属度函数,该方法存在以下两个问题。一个事实是设计成本很高;另一个是最优地调优成员函数是困难的。我们使用遗传算法(GA)自动调整隶属函数。将隶属函数编码为遗传算法的一条染色体,并用实际交通数据计算的平均日误差的平均值作为适应度函数。使用实际交通数据和实际路线图进行的实验表明,该方法比传统方法更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Interpolation of Traffic Data by Genetic Fuzzy System
We propose a method to interpolate traffic data of roads using genetic fuzzy systems (GFSs). In Japan, car navigation equipment provides drivers with real-time traffic information about principal roads. The information enables giving route guidance. In a previous study, the problem of the method lies in the following two facts because a human designs membership functions of fuzzy c-means (FCM) experientially. One fact is that the design cost is high; the other is that tuning membership functions optimally is difficult. We automatically tune membership functions using a genetic algorithm (GA). The membership functions are encoded as a chromosome of GA, and the average of mean daily errors calculated from actual traffic data is used as a fitness function. Experiments using actual traffic data and an actual road map indicate that our method is more effective than the conventional method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信